UNITED24 - Make a charitable donation in support of Ukraine!


Military Robots / Unmanned Ground Vehicles (UGV)

  • FCS UGV Soldier
  • Dragon Runner
  • MPRS - Man Portable Robotic System
  • MTRS - Man Transportable Robot
  • ODS
  • PackBot
  • SMR - Small Mobile Robot
  • T3

  • FCS UGV Mule
  • Gladiator
  • RCSS - Robotic Combat Support
  • RONS - Remote Ordnance Neutralization

  • Squad Multipurpose Equipment Transport SMET
  • Robotic Recovery System
  • Robotic Combat Vehicle [Wingman]
  • Tracked Robot 10-ton (TRX)
  • Ripsaw M5 Robotic Combat Vehicle (RCV)

  • FCS UGV Armed Recon Vehicle
  • ARTS - All-purpose Remote Transport
  • CAT - Crew- and Automation Testbed
  • XUV - Experimental Unmanned Vehicle
  • Robotic Follower

  • AOE - Automated Ordnance Excavator
  • CRS - Common Robotic System
  • Panther - M60
  • Panther II - M1
  • Within a decade technological advances could leave human operators out of the kill chain. The US and other militaries have said they have no plans to remove human supervision over the decision to use lethal force, despite advances in technology.

    Human Rights Watch has jointly published a report with the Harvard Law School's International Rights Clinic arguing that within 30 years militaries could be armed with autonomous "killer robots." They said such weapons would be inconsistent with international humanitarian law and would increase the risk to civilians during armed conflict.

    In order to prevent a move in that direction, the campaigners are pushing for a global deal that would prevent the use of such weapons, similar to agreements banning the use of landmines and cluster bombs. "One of the things that holds us back from barbarism in contexts of war is this distinction between combatants and civilians," said David Mepham, the United Kingdom director of Human Rights Watch. "And we are worried about a robotic weapon of the future not being able to tell the difference between a child holding out an ice cream and someone holding a weapon."

    Teleoperation capabilities, or the ability for an operator to manipulate and control a UGV remotely from a safe location through a tether or radio link, is the most mature control technology available and therefore is an area of emphasis for all Services in developing first generation robotics programs. Teleoperation capabilities are important to the warfighter because they enable standoff operationsand thereby reduce or remove operator risks in highly stressful and dangerous environments, such as minefields and in areas of potential explosive hazards.

    However, these capabilities alone do little to reduce operator task loading or to reduce the ratio of operators to platforms. Moreover, it is generally recognized that future second generation high payoff robotic capabilities can only be realized when platforms exhibit semi-autonomous mobilitycapabilities, navigation, and mission accomplishment.

    To fully realize similar capabilities to today's manned systems, semi autonomous UGVs must be developed that demonstrate increasingly tactical human like behaviors in route planning and execution, obstacle avoidance, and mission performance. Additionally, new technologies must be investigated to improve mobility of UGV platforms in unstructured environments including complex terrain and urban settings using novel locomotion means and intelligent control systems.

    Department of Defense (DOD) Unmanned Ground Vehicles (UGV) save lives and improve national defense capabilities by providing agencies of the Department of Defense (DOD) with the control system architectures, advanced sensor systems, research services, and standards to achieve autonomous mobility for unmanned ground vehicles.

    In 1990, in response to Congressional concerns, a number of Department of Defense (DoD) advanced development projects related to ground vehicle robotics were consolidated under the Joint Robotics Program (JRP) directed by the Office of the Secretary of Defense (OSD). The Joint Robotics Program Master Plan (JRPMP) is prepared annually and provided to Congress. The plan provides a single, integrated DoD document that lays out the strategies for acquiring first-generation UGVs and for developing technologies critical to follow- on systems. The JRPMP describes the individual projects and the management framework for their execution. It is an OSD management tool for fulfilling its responsibility to oversee the Joint Robotics Program.

    The DOD initiated plans for the deployment of robotic vehicle platforms in the battlefield and plans to standardize the architecture and interfaces. This will encourage the use of commercially available "plug-and-play" components and provide reusability and interoperability on a variety of ground vehicles.

    Robotics industry leaders point out that advances in military, transportation, medical, and other non-manufacturing robotics applications, where research and development investments are justified by dramatic potential benefits, will provide the technologies to advance future generations of robots for application in manufacturing. Industrial robots will trail in technology development, adopting advanced technology as it is proven to be reliable and cost effective; autonomous mobile systems for military applications represent the forefront of robotics research.

    A variety of potential UGV applications to land operations can increase mission performance, combat effectiveness, and personnel safety. These include detection, neutralization, and breaching of minefields and other obstacles; RSTA; UXO clearance; EOD; physical security; logistics; fire-fighting; urban warfare; weapons employment; and operations in contaminated and other denied areas. The threat of encountering chemical and biological weapons in Third World conflicts continues.

    The M60 Panther and the Mini-Flail prototype mine proofing systems continue to be used with great success in Bosnia and Kosovo, and have resulted in additional procurement orders for six more Mini-Flails and the fielding of Abrams Panther, based upon an M1-IP (Initial Production) chassis in 2002. The RONS has been fielded by each of the Services, and is undergoing development of upgrades via a Continuous Improvement Program (CIP). Operation Enduring Freedom has resulted in an additional United States Air Force (USAF) requirement for 30 RONS. The Air Force is using the All-Purpose Remote Transport System (ARTS) overseas for force protection and homeland defense in Operations Enduring Freedom and Iraqi Freedom. Twenty-three units have been fielded with an additional procurement order for 39 more units resulting in full operational capability in late FY05 with the fielding of 62 ARTS.

    Requirements for these and other UGV systems have been and are being generated. An example is the emerging Marine Corps requirement for the UGV currently named Gladiator. In response to the maturation of JRP developments and requirements, OSD established an Engineering and Manufacturing Development (EMD) program element (PE 0604709D) in FY97, to continue formal acquisition programs.

    Twentyyears later, the Defense Advanced Research Projects Agency (DARPA) had a Collaborative Operations in Denied Environment (CODE) program focused on developing software that allows groups of drones to work in teams. DARPA's CODE program aims to overcome these limitations with new algorithms and software for existing unmanned aircraft that would extend mission capabilities and improve US forces' ability to conduct operations in denied or contested airspace. CODE researchers seek to create a modular software architecture beyond the current state of the art that is resilient to bandwidth limitations and communications disruptions yet compatible with existing standards and amenable to affordable retrofit into existing platforms."

    According to Paul Scharre, author of "Army of None: Autonomous Weapons and the Future of War," the purpose of CODE is not to develop autonomous weapons, but rather to adapt to "a world where we'll have groups of robots operating collaboratively together under one person in supervisory control. The program manager has compared it to wolves hunting in coordinated packs."

    In 2015, the Institute for the Future of Life in the United States issued an open letter signed by more than 16,000 people, warning that an artificial intelligence-based combat system would pose a threat to civilians and may trigger an arms race, which would eventually cause fatal consequences for humans. It is worth noting that among the signatories are American entrepreneur, SpaceX and Tesla founder Elon Musk, British astrophysicist Stephen Hawking (1942-2018) and American philosopher Noam Chomsky. In August 2017, Musk, together with about 100 developers in the field of robotics and artificial intelligence systems, submitted a petition to the United Nations calling for a total ban on the development and testing of autonomous offensive weapons.

    Join the GlobalSecurity.org mailing list

    Page last modified: 12-10-2021 15:07:41 ZULU