The Largest Security-Cleared Career Network for Defense and Intelligence Jobs - JOIN NOW



The Wings are the "arms" of the airplane. They provide the principal lifting force of the airplane. They hold the plane aloft by creating lift from the air rushing over them. Like all plane parts, the Wings should be light and strong, but also flexible to absorb sudden gusts of wind.

Yaw -- The angle between the fuselage of the airplane and the relative wind as seen from above the airplane. Yaw is the term pilots use to describe the turning left or right of the plane. Yaw is the sideways movement of the plane. Normally an airplane is flown without yaw.



Lift is the aerodynamic force that supports an aircraft in flight, due to the airflow over the wings or body. Drag is the resistance a vehicle moving through the air experiences, and pitching moments are a result of aerodynamic forces that make the nose of an aircraft move either up or down.

The shape of a wing looks like an elongated water drop laying on its side. This shape is referred to as an airfoil. Usually the top is curved more than the bottom making the upper surface slightly longer than the bottom. Since air passing over the top and bottom must reach the rear of the wing at the same time, the air passing over the top must not only travel faster, but also changes direction and is deflected downward. This actually results in lift being generated due to a rate of change of vertical momentum and a difference in static pressure between the top and bottom of the wing.

The production of lift is probably the most important topic in the science of aerodynamics. It is a wing's ability to efficiently produce a force perpendicular to the air passing over it that makes heavier-than-air flight possible.

In the big picture, all wings produce lift the same way - they push down on the air, forcing the air downward relative to the wing. It is this force that we call lift. Many different types of shapes do this, but the shapes built specifically for this purpose are called "airfoils."

Various Airfoils.

The wing makes its "magic" by forcing the air down. Some people like to compare it to water skiing, where water skis and speed are used to force the water down and the skier up. But that analogy tells only part of the story. Most of the time, the top of the wing does the majority of the "pushing" on the air (actually, in this case, "pulling" the air down). The top and the bottom of the wing combine to produce a force, and the part of this force perpendicular to the relative wind is lift. Since the wing not only pushes the air down but slows it down as well, some drag (induced drag) is caused.

The air that flows over the top of the wing also tends to flow inward, toward the fuselage. The air that flows underneath the wing is flowing more slowly and tends to flow outward. As these two airflows meet along the trailing edge of the wing, they form a rotating column of air that extends from the wing tip. This is called a wing-tip vortex. If they are lucky, passengers riding behind the wing of an airplane can sometimes see a wing-tip vortex - particularly if they are flying in the morning or on a slightly humid day. It looks like a long, slim whirlwind that extends from the tip of the wing. Unfortunately, while they are fun to watch, the same characteristics of the airflow that create wing-tip vortices (the plural of vortex is vortices) also create drag. When engineers design a new airplane, the size and shape of the wings are a very important issue. Wings provide the majority of the lift for the airplane, but they also cause drag. In their efforts to increase lift and reduce drag, engineers use a mathematical formula called the ``aspect ratio''. The ``aspect ratio'' is simply a comparison between the length and width of the wing: the length of the wing divided by the width of the wing equals the aspect ratio. Experiments have shown that a wing built with a higher aspect ratio tends to create less drag than a wing built with a smaller aspect ratio -even when their area remains the same.

The chord line is an imaginary line drawn from the leading edge to the trailing edge of an airfoil. Secondly, the relative wind is the airflow which acts on the airfoil and is paralell to but opposite the direction of flight. The angle between the chord line and the relative wind is called the angle of attack, which is called "alpha." As the angle of attack increases, the change of vertical momentum increases. Additionally, as the angle of attack increases, the coefficient of lift (CL) increases. The result is an increase in lift. However, there are limits to how much the angle of attack can be increased. At some higher angle of attack, the lift coefficient begins to decrease. The angle of attack where the lift coefficient begins to decrease is called the critical angle of attack. Once the critical angle is exceeded, the wing can no longer produce enough lift to support the weight of the aircraft and the wing is said to be "stalled." In other words, the aircraft will stall when the critical angle of attack is exceeded.

Lift and Drag

A wing must be at a high enough AOA to deflect the air downward and produce the desired lift. The pilot uses the elevators to change the angle of attack until the wings produce the lift necessary for the desired maneuver.

Other factors are involved in the production of lift besides the AOA. These factors are relative wind velocity (airspeed) and air density (temperature and altitude). Changing the size or shape of the wing (lowering the flaps) will also change the production of lift. Airspeed is absolutely necessary to produce lift. If there is no airflow past the wing, no air can be diverted downward. At low airspeed, the wing must fly at a high AOA to divert enough air downward to produce adequate lift. As airspeed increases, the wing can fly at lower AOAs to produce the needed lift. This is why airplanes flying relatively slow must be nose high (like an airliner just before landing or just as it takes off) but at high airspeeds fly with the fuselage fairly level. The key is that the wings don't have to divert fast moving air down nearly as much as they do to slow moving air.

As an airplane in flight slows down, it must continually increase its pitch attitude and AOA to produce the lift necessary to sustain level flight. At high AOAs, the top of the wing diverts the air through a much larger angle than at low AOAs. As the AOA increases, a point will be reached where the air simply cannot "take" the upper curve over the entire distance of the top of the wing, and it starts to separate. When this point is reached, the wing is not far from stalling. The airflow unsticks further up the wing as the AOA increases. The top of the wing still contributes to the production of lift, but not along its entire curve.

As the airspeed slows or as the angle of attack, or both, is increased further, the point is reached where, because of this separation, an increase in the AOA results in a loss of lift instead of an increase in lift. Thus, the wing no longer produces sufficient lift and the airplane that the wing is supporting accelerates downward. This is the stall.
 Air density also contributes to the wing's ability to produce lift. This is manifested primarily in an increase in altitude, which decreases air density. As the density decreases, the wing must push a greater volume of air downward by flying faster or push it down harder by increasing the angle of attack. This is why aircraft that fly very high must either go very fast like the SR-71, capable of flying Mach 3 (three times the speed of sound), or must have a very large wing for its weight, like the U-2.

Wing Approaching the Stall

Join the mailing list

One Billion Americans: The Case for Thinking Bigger - by Matthew Yglesias

Page last modified: 07-07-2011 02:33:19 ZULU