UNITED24 - Make a charitable donation in support of Ukraine!

Weapons of Mass Destruction (WMD)

Table 4-32. Worker radiological doses and resulting health effects associated with implementation of alternative A.a


No-action
Waste forecast
Receptor(s)
alternative
Expected
Minimum
Maximum
Individual involved worker
Average annual dose (rem)b 0.0250.033 0.0320.047
Associated probability of a fatal cancer
1.0x10-5
1.3x10-5
1.3x10-5
1.9x10-5
30-year dose to average worker (rem) 0.750.99 0.961.4
Associated probability of a fatal cancer 3.0x10-4 4.0x10-4 3.9x10-4 5.7x10-4
All involved workersc
Annual doseb (person-rem) 5270 67113
Associated number of fatal cancers 0.0210.028 0.0270.045
30-year dose (person-rem) 1,6002,100 2,0003,400
Associated number of fatal cancers 0.620.84 0.811.4
Individual uninvolved workerb,d
Annual dose at 100 metere (rem) (associated probability of a fatal cancer) 1.0x10-5
(4.1x10-9)
0.0054
(2.1
x10-6)
3.7x10-3
(
1.5x10-6)
0.088
(3.5
x10-5)
Annual dose at 640 meters (rem) (associated probability of a fatal cancer) 2.9x10-7
(1.1x10-10)
1.6x10-4
(6.2x10-8)
1.1x10-4
(4.3x10-8)
0.0026
(1.0
x10-6)
30-year dose at 100 meters (rem) (associated probability of a fatal cancer) 3.0x10-4
(1.2x10-7)
0.16
(6.4
x10-5)
0.11
(4.5
x10-5)
2.7
0.0011
30-year dose at 640 meters (rem) (associated probability of a fatal cancer) 8.6x10-6
(3.4x10-9)
0.0047
(1.9
x10-6)
0.0033
(1.3
x10-6)
0.077
(3.1
x10-5)

a. Supplemental facility information is provided in Appendix E.

b. Annual individual worker doses can be compared with the regulatory dose limit of 5 rem (10 CFR 835) and with the SRS administrative exposure guideline of 0.8 rem. Operational procedures ensure that the dose to the maximally exposed worker remains as far below the regulatory dose limit as is reasonably achievable.

c. The number of involved workers is estimated to be 2,123 for the expected waste forecast; 2,104 for the minimum waste forecast; and 2,379 for the maximum waste forecast.

d. Dose is due to emissions from the transuranic waste characterization/certification facility except for the no-action alternative. Doses conservatively assume 80 hours per week of exposure. Exposures for a typical 40-hour work week would be approximately 50 percent of doses given in the table.

e. To convert to feet, multiply by 3.28.


Table 4-33. Radiological doses associated with implementation of alternative A and resulting health effects to the public.a


No-action alternative
Alternative A
Doseb
Dose


Waste forecast/receptor(s)c

Atmospheric releases

Aqueous releases


Total
Probabilityd or number of fatal cancers

Atmospheric releases g

Aqueous releases


Total
Probabilityd or number of fatal cancers
Expected waste forecast
Offsite MEIe
Annual, millirem1.2x10-4 6.9x10-4
8.1x10-4
4.1x10-10 0.011
6.9x10-4
0.012
5.8x10-9
30 years, millirem0.0037 0.0210.0251.2x10-8 0.330.021 0.35
1.7x10-7
Population
Annual, person-rem
2.9x10-4
0.0068
0.0071
3.5x10-6
0.560.0068 0.57
2.8x10-4
30 years, person-rem
0.0086
0.20
0.21
1.1x10-4
170.20 17
0.0085
Minimum waste forecast
Offsite MEI
Annual, millirem
NAf
NA
NA
NA
0.0057
6.9x10-4
0.0064
3.2x10-9
30 years, millirem
NA
NA
NA
NA
0.17
0.021
0.19
9.6x10-8
Population
Annual, person-rem
NA
NA
NA
NA
0.27 0.00680.28
1.4x10-4
30 years, person-rem
NA
NA
NA
NA
8.2 0.208.4
0.0042
Maximum waste forecast
Offsite MEI
Annual, millirem
NA
NA
NA
NA
0.08
6.9x10-4
0.081
4.1x10-8
30 years, millirem
NA
NA
NA
NA
2.4
0.021
2.4
1.2x10-6
Population
Annual, person-rem
NA
NA
NA
NA
3.4 0.00683.4
0.0017
30 years, person-rem
NA
NA
NA
NA
100 0.20100
0.052

a. Supplemental facility information is provided in Appendix E.

b. For atmospheric releases, the dose is to the population within 80 kilometers (50 miles) of SRS. For aqueous releases, the dose is to the people using the Savannah River from SRS to the Atlantic Ocean.

c. The doses to the public from total SRS operations in 1993 were 0.25 millirem to the offsite maximally exposed individual and 9.1 person-rem to the regional population. These doses, when added to the incremental doses associated with the waste management alternative given in this table, are assumed to equal total SRS doses. Source: Arnett, Karapatakis, and Mamatey (1994).

d. For the offsite maximally exposed individual, probability of a latent fatal cancer; for the population, number of fatal cancers.

e. MEI = maximally exposed individual.

g. Atmospheric releases for MEI and population include contribution from off-site facilities, which contribute less than 0.01% to the atmospheric releases reported here.


Table 4-34. Estimated number of excess latent cancers in the offsite population from nonradiological carcinogens emitted under alternative A.


Concentrationb,c
Latent cancersd


Pollutant
Unit risk factora (latent cancers/ (mg/m3)e
Expected waste forecast
(mg/m3)
Minimum waste forecast
(mg/m3)
Maximum waste forecast
(mg/m3)

Expected
waste forecastf

Minimum waste forecast

Maximum waste forecast
Acetaldehyde
2.2x10-6
1.5x10-7
2.7x10-8
9.1x10-8
1.4x10-13
2.5x10-14
8.6x10-14
Acrylamide
0.001
1.5x10-7
2.7x10-8
9.1x10-8
8.2x10-11
1.5x10-11
5.1x10-11
Acrylonitrile
6.8x10-5
1.5x10-7
2.7x10-8
9.1x10-8
4.3x10-12
7.9x10-13
2.7x10-12
Arsenic Pentoxide
0.004
8.1x10-7
5.0x10-7
6.3x10-7
1.5x10-9
9.1x10-10
1.2x10-9
Asbestos
0.23
3.5x10-9
4.1x10-10
2.2x10-8
3.5x10-10
4.0x10-11
2.2x10-9
Benzene
8.3x10-6
0.044
0.044
0.044
1.6x10-7
1.6x10-7
1.6x10-7
Benzidine
0.067
1.5x10-7
2.7x10-8
9.1x10-8
4.2x10-9
7.8x10-10
2.6x10-9
Bis(chloromethyl)ether
0.062
1.5x10-7
2.7x10-8
9.1x10-8
3.9x10-9
7.2x10-9
2.4x10-9
Bromoform
1.1x10-6
1.5x10-7
2.7x10-8
9.1x10-8
7.0x10-14
1.3x10-14
4.3x10-14
Carbon Tetrachloride
1.5x10-5
1.5x10-7
2.7x10-8
9.1x10-8
9.5x10-13
1.7x10-13
5.9x10-13
Chlordane
3.7x10-4
1.5x10-7
2.7x10-8
9.1x10-8
2.3x10-11
4.3x10-12
1.4x10-11
Chloroform
2.3x10-5
0.003
0.003
0.003
3.0x10-8
3.0x10-8
3.0x10-8
Cr(+6) Compounds
0.012
4.2x10-9
4.5x10-11
2.3x10-9
2.2x10-11
4.9x10-13
1.2x10-11
Formaldehyde
1.3x10-5
1.5x10-7
2.7x10-8
9.1x10-8
8.2x10-13
1.5x10-13
5.1x10-13
Heptachlor
0.0013
9.7x10-7
6.7x10-7
8.3x10-7
5.4x10-10
3.7x10-10
4.6x10-10
Hexachlorobenzene
4.6x10-4
1.5x10-7
2.7x10-8
9.1x10-8
2.9x10-11
5.3x10-12
1.8x10-11
Hexachlorobutadiene
2.2x10-5
1.5x10-7
2.7x10-8
9.1x10-8
1.4x10-12
2.5x10-13
8.6x10-13
Hydrazine
0.0049
1.5x10-7
2.7x10-8
9.1x10-8
3.1x10-10
5.7x10-11
1.9x10-10
1,1,2,2-Tetrachloroethane
5.8x10-5
2.9x10-6
4.9x10-7
1.8x10-6
7.2x10-11
1.2x10-11
4.4x10-11
1,1,2-Trichloroethane
1.6x10-5
1.5x10-7
2.7x10-8
9.1x10-8
1.0x10-12
1.9x10-13
6.2x10-13
Toxaphene
3.2x10-4
9.7x10-7
6.7x10-7
8.3x10-7
1.3x10-10
9.2x10-11
1.1x10-10
1,1-Dichloroethene
5.0x10-5
2.9x10-5
4.8x10-5
5.6x10-5
6.3x10-10
1.0x10-9
1.2x10-9
Methylene Chloride
4.7x10-7
1.5x10-7
2.7x10-8
9.1x10-8
3.0x10-14
5.4x10-15
1.8x10-14
TOTAL
2.0x10-7
1.9x10-7
2.0x10-7

a. Source: EPA (1994).

b. Maximum annual boundary-line concentration.

c. Source: Stewart (1994).

d. Latent cancer probability equals unit risk factor times concentration times 30 years divided by 70 years.

e. Micrograms per cubic meter of air.

f. Under the maximum waste forecast, wastewater would be treated in the containment building, which would lower the amount of wastewater going to the Consolidated Incineration Facility. Therefore, slightly higher impacts may occur in the expected waste forecast than in the maximum waste forecast.




NEWSLETTER
Join the GlobalSecurity.org mailing list