LESSON 1
LESSON 1 | Theory and Principles of Gas Turbine Engines. |
CREDIT HOURS | 2. |
TEXT ASSIGNMENT | Reference Text AL0993, paragraphs 1.1-1.14. |
MATERIALS REQUIRED | None. |
LESSON OBJECTIVE | To enable you to describe the theory of a gas turbine engine and its principles of operation. |
Chapter 1
INTRODUCTION TO GAS TURBINE ENGINES
1.1. INTRODUCTION
This chapter introduces the theory and operating principles of gas turbine engines. Gas turbine engines can be classified according to the type of compressor used, the path the air takes through the engine, and how the power produced is extracted or used. The chapter is limited to the fundamental concepts of the three major classes of turbine engines, each having the same principles of operation.
Chapter 1 is divided into three sections; the first discusses the theory of turbine engines. The second section deals with principles of operation, and section III covers the major engine sections and their description.
Section I. Theory of Gas Turbine Engines
1.2. GENERAL
Section I covers the laws of physics and fundamentals pertaining to the theory of jet propulsion. The gas turbine engines used to power Army aircraft are turboshaft powerplants. The energy produced drives the power shaft. Energy is generated by burning the fuel-air mixture in the engine and accelerating the gas tremendously. These high-velocity gases are directed through turbine wheels which convert the axial movement of the gas to a rotary motion. This rotary power is used to drive a powershaft, which drives a propeller or a rotor transmission.
1.3. LAWS OF MOTION
The theory of gas turbine engines is based on the laws and principles of physics discussed in the subparagraphs that follow.
Newton's First Law of Motion. The first law states that a body in a state of rest remains at rest, and a body in motion tends to remain in motion at a constant speed and in a straight line, unless acted upon by some external force.
Newton's Second Law of Motion. The second law states that an imbalance of forces on a body produces or tends to produce an acceleration in the direction of the greater force, and the acceleration is directly proportional to the force and inversely proportional to the mass of the body.
Newton's Third Law of Motion. The third law states that for every action there is an equal and opposite reaction, and the two are directed along the same straight line.
Bernoulli's Principle. This principle states that if the velocity of a gas or liquid is increased its pressure will decrease. The opposite is also true. If the velocity of a gas or liquid is decreased its pressure will increase. This fact relates directly to the law of conservation of energy.
Einstein's Law of Conservation of Energy. This law states that the amount of energy in the universe remains constant. It is not possible to create or destroy energy; however, it may be transformed.
Boyle's Law. This law states that if the temperature of a confined gas is not changed, the pressure will increase in direct relationship to a decrease in volume. The opposite is also true -- the pressure will decrease as the volume is increased. A simple demonstration of how this works may be made with a toy balloon. If you squeeze the balloon, its volume is reduced, and the pressure of air inside the balloon is increased. If you squeeze hard enough, the pressure will burst the balloon.
Charles' Law. This law states that if a gas under constant pressure is so confined that it may expand, an increase in the temperature will cause an increase in volume. If you hold the inflated balloon over a stove, the increase in temperature will cause the air to expand and, if the heat is sufficiently great, the balloon will burst. Thus, the heat of combustion expands the air available within the combustion chamber of a gas turbine engine.
Pressure and Velocity. Air is normally thought of in relation to its temperature, pressure, and volume. Within a gas turbine engine the air is put into motion so now another factor must be considered, velocity. Consider a constant airflow through a duct. As long as the duct cross-sectional area remains unchanged, air will continue to flow at the same rate (disregard frictional loss). If the cross-sectional area of the duct should become smaller (convergent area), the airflow must increase velocity if it is to continue to flow the same number of pounds per second of airflow (Bernoulli's Principle). In order to obtain the necessary velocity energy to accomplish this, the air must give up some pressure and temperature energy (law of conservation of energy). The net result of flow through this restriction would be a decrease in pressure and temperature and an increase in velocity. The opposite would be true if air were to flow from a smaller into a larger duct (divergent area); velocity would then decrease, and pressure and temperature would increase. The throat of an automobile carburetor is a good example of the effect of airflow through a restriction (venturi); even on the hottest day the center portion of the carburetor feels cool. Convergent and divergent areas are used throughout a gas turbine engine to control pressure and velocity of the air-gas stream as it flows through the engine.

1.4. THEORY OF JET PROPULSION
The principle of jet propulsion can be illustrated by a toy balloon. When inflated and the stem is sealed, the pressure is exerted equally on all internal surfaces. Since the force of this internal pressure is balanced there will be no tendency for the balloon to move.


The balloon moves because of an unbalanced condition existing within it. The jet of air does not have to push against the outside atmosphere; it would function better in a vacuum. When the stem area of the balloon is released, a convergent nozzle is created. As the air flows through this area, velocity is increased accompanied by a decrease in air pressure. In addition, an area of skin against which the internal forces had been pushing is removed. On the opposite internal surface of the balloon, an equal area of skin still remains. The higher internal pressure acting on this area moves the balloon in a direction away from the open stem. The flight of the balloon will be of short duration, though, because the air in the balloon is soon gone. If a source of pressurized air were provided, it would be possible to sustain flight of the balloon.
1.5. THEORY OF THE GAS TURBINE ENGINE
If the balloon were converted into a length of pipe, and at the forward end an air compressor designed with blades somewhat like a fan were installed, this could provide a means to replenish the air supply within the balloon.

A source of power is now required to turn the compressor. To extend the volume of air, fuel and ignition are introduced and combustion takes place. This greatly expands the volume of gas available.

In the path of the now rapidly expanding gases, another fan or turbine can be placed. As the gases pass through the blades of the turbine, they cause it to rotate at high speed. By connecting the turbine to the compressor, we have a mechanical means to rotate the compressor to replenish the air supply. The gases still possessing energy are discharged to the atmosphere through a nozzle that accelerates the gas stream. The reaction is thrust or movement of the tube away from the escaping gas stream. We now have a simple turbojet engine.

The turbojet engine is a high-speed, high-altitude powerplant. The Army, at present, has no requirement for this type of engine. Because it is simple and easy to operate and maintain, however, the Army does use the gas turbine engine. The simple turbojet engine has primarily one rotating unit, the compressor/turbine assembly. The turbine extracts from the gas stream the energy necessary to rotate the compressor. This furnishes the pressurized air to maintain the engine cycle. Burning the fuel-air mixture provides the stream of hot expanding gas from which approximately 60 percent of the energy is extracted to maintain the engine cycle. Of the total energy development, approximately 40 percent is available to develop useful thrust directly.
If we had ten automobile engines that would equal the total shaft horsepower of a turbine engine, it would take six of these engines to turn the compressor, and the other four would supply the power to propel the aircraft. The amount of energy required to rotate the compressor may at first seem too large; however, it should be remembered that the compressor is accelerating a heavy mass (weight) of air towards the rear of the engine. In order to produce the gas stream, it was necessary to deliver compressed air by a mechanical means to a burner zone. The compressor, being the first rotating unit, is referred to as the N1 system.
With a requirement for an engine that delivers rotational shaft power, the next step is to harness the remaining gas stream energy with another turbine (free turbine). By connecting the turbine to a shaft, rotational power can be delivered to drive an aircraft propeller, a helicopter rotor system, a generator, a tank, an air cushion vehicle (ACV), or whatever is needed. The power shaft can extend from the front, back, or from an external gearbox. All of these locations are in use on various types of Army engines at present.
The following sketch shows a turboshaft engine with the power shaft extended out the front. The bottom sketch shows the same engine with the power shaft extending out the back.
The basic portion of the turbine engine, the gas producer, extracts approximately 60 percent of the gas stream energy (temperature/pressure) to sustain the engine cycle. To develop rotational shaft power, the remaining gas stream energy must drive another turbine. In Army engines today, a power turbine that is free and independent of the gas producer system accomplishes this task. The power turbine and shaft (N2 system) are not mechanically connected to the gas producer (N1 system). It is a free turbine. The gas stream passing across the turbines is the only link between these two systems. The free-turbine engine can operate over wide power ranges with a constant output-shaft speed.


In operation, the gas producer (N1) system automatically varies its speed, thereby controlling the intensity of the gas stream in relation to the load applied to the power (N2) shaft. This is accomplished by a fuel metering system that senses engine requirements. The free turbine design has revolutionized the methods of application of shaft turbine engines. Why a shaft turbine? Why is a perfectly good jet engine used to drive a propeller? Because in the speed range that Army aircraft operate, the propeller or helicopter rotor is more efficient. With a turbojet engine, power (thrust) produced is roughly the difference between the velocity of the air entering the engine and the velocity of the air exiting from the engine. Efficiency of the engine (power producer versus fuel consumed) increases with speed until it is 100 percent efficient when the forward speed of the engine is equal to the rearward speed of the jet. It is this low efficiency at takeoff and at low cruising speed (i.e., 400 mph) that makes the turbojet engine unsuitable for use in Army aircraft. The propeller does not lack efficiency at low speed; the reverse is true, in that efficiency falls off at high speed. The result is to harness the jet engine's gas stream energy to drive a propeller or helicopter rotor system, thereby taking advantage of the best features of both.
Aircraft reciprocating engines operate on the four-stroke, five-event principle. Four strokes of the piston, two up and two down, are required to provide one power impulse to the crankshaft. Five events take place during these four strokes: the intake, compression, ignition, power, and exhaust events. These events must take place in the cylinder in the sequence given for the engine to operate.

Although the gas turbine engine differs radically in construction from the conventional four-stroke, five-event cycle reciprocating engine, both involve the same basic principle of operation. In the piston (reciprocating) engine, the functions of intake, compression, ignition, combustion, and exhaust all take place in the same cylinder and, therefore, each must completely occupy the chamber during its respective part of the combustion cycle. In the gas turbine engine, a separate section is devoted to each function, and all functions are performed at the same time without interruption.
1.6. SUMMARY
The theory of gas turbine engine operation is based on the laws or principles of physics. The principle of jet propulsion can be illustrated by a toy balloon. When the balloon is inflated and the stem is unsealed the balloon will move in a direction away from the escaping jet of air. If the balloon is converted into a length of pipe, and at the forward end an air compressor is installed to supply air for combustion, and to expand the volume of air, fuel and ignition are introduced and combustion takes place. Then, in the path of the expanding gases a turbine rotor is installed. As the gases pass through the turbine blades, the turbine rotor is rotated at high speed. This turbine rotor is connected to the compressor shaft, and we now have a means to rotate the compressor to replenish the air supply. The remaining gases are discharged to the atmosphere. The reaction of these gases is thrust, or movement of the tube away from the escaping gases. This is a simple turbojet engine. At present the Army has no requirement for this high-speed, high-altitude powerplant. However, if we install another turbine rotor after the rotor that drives the compressor, we have a turboshaft engine that can be used to drive a transmission in a helicopter or a propeller on a fixed-wing aircraft.

In the turbojet engine, approximately 60 percent of the energy is extracted to rotate the compressor, while the remaining 40 percent is used to develop thrust. In the turboshaft engine, the remaining energy is used to drive a turbine rotor attached to a transmission or propeller. On a free-turbine engine, the gas stream passing across the turbines is the only link between the two turbine rotors. One turbine drives the compressor and the other turbine propels the aircraft. The free-turbine engine is used in Army aircraft.
The gas turbine engine differs radically in construction from the reciprocating engine in that the turbine engine has a separate section for each function, while in the reciprocating engine all functions are performed in the same cylinder.
Section II. Principles of Operation
1.7. GENERAL
This section covers the principles of turbine engine operation. The three classifications of turbine engines are turbojet, turboshaft, and ramjet. The term "turbo" means "turbine." Therefore, a turboshaft engine is one which delivers power through a shaft.
1.8. OTTO AND BRAYTON CYCLES
There is an element of similarity to both the reciprocating and jet engines, but the thermodynamic cycle of each is different from the other. The reciprocating engine operates on the Otto cycle, a constant volume cycle, consisting of four distinct operations. These operations are performed intermittently by a piston reciprocating in an enclosed cylinder. It is important to remember that the piston in a reciprocating engine delivers power only during one of its four strokes.
The turbine engine operates on the Brayton cycle, a constant pressure cycle containing the same four basic operations as the Otto cycle, but accomplishing them simultaneously and continuously so that an uninterrupted flow of power from the engine results. Figure 1.1 shows a graph display of the Otto and Brayton cycles.

Figure 1.1. Otto and Brayton Cycles.
1.9. BRAYTON CYCLE OF OPERATION
Ambient air is drawn into the inlet section by the rotating compressor. The compressor forces this incoming air rearward and delivers it to the combustion chamber at a higher pressure than the air had at the inlet. The compressed air is then mixed with fuel that is sprayed into the combustion chamber by the fuel nozzles. The fuel and air mixture is then ignited by electrical igniter plugs similar to spark plugs. This ignition system is only in operation during the starting sequence, and once started, combustion is continuous and self-sustaining as long as the engine is supplied with the proper air-fuel ratio. Only about 25 percent of the air is used for combustion. The remaining air is used for internal cooling and pressurizing.
The turbine engines in the Army inventory are of the free-power turbine design, as shown in figure 1.2. In this engine, nearly two-thirds of the energy produced by combustion is extracted by the gas producer turbine to drive the compressor rotor. The power turbine extracts the remaining energy and converts it to shaft horsepower (shp), which is used to drive the output shaft of the engine. The gas then exits the engine through the exhaust section to the atmosphere. Army helicopters use a divergent duct to eliminate the remaining thrust. The various kinds of exhaust ducting are discussed in detail with the engine using that particular ducting.

Figure 1.2. Typical Free-Power Turboshaft Engine.
The turbojet is the engine in most common use today in high-speed, high-altitude aircraft, not in Army aircraft. With this engine, air is drawn in by a compressor which raises internal pressures many times over atmospheric pressure. The compressed air then passes into a combustion chamber where it is mixed with fuel to be ignited and burned. Burning the fuel-air mixture expands the gas, which is accelerated out the rear as a high-velocity jet-stream. In the turbine section of the engine, the hot expanded gas rotates a turbine wheel which furnishes power to keep the compressor going. The gas turbine engine operates on the principle of intake, compression, power, and exhaust, but unlike the reciprocating engine, these events are continuous. Approximately two-thirds of the total energy developed within the combustion chamber is absorbed by the turbine wheel to sustain operation of the compressor. The remaining energy is discharged from the rear of the engine as a high velocity jet, the reaction to which is thrust or forward movement of the engine. The turbojet is shown schematically in figure 1.3.

Figure 1.3. Axial-Flow Turbojet Engine.
1.11. TURBOPROP ENGINE AND TURBOSHAFT ENGINE
The turboprop engine and turboshaft engines, shown in figures 1.4 and 1.5, are of the same basic type as the turbojet. Instead of ejecting high-velocity exhaust gases to obtain thrust, as in the turbojet, a turbine rotor converts the energy of the expanding gases to rotational shaft power. A propeller or helicopter transmission can be connected to the engine through reduction gearing. This energy may be extracted by the same turbine rotor that drives the compressor, or it may be a free-power turbine which is independent of the compressor turbine and only linked to it by the expanding gases.

Figure 1.4. Axial-Flow Turboprop Engine.

Figure 1.5. Centrifugal-Flow Turbojet Engine.
The free-power turbine is the type used in Army aircraft to harness the energy of the gases and convert this energy to rotational shaft power. This feature of having a free-power turbine enables the power output shaft to turn at a constant speed while the power producing capability of the engine can be varied to accommodate the increased loads applied to the power output shaft. Turbine engines may be further divided into three general groups, centrifugal-flow, axial-flow, and axial-centrifugal-flow, depending upon the type of compressor. Figure 1.4 shows an axial-flow turboprop engine, figure 1.5 shows a centrifugal-flow turbojet engine, and figure 1.5a shows an axial-centrifugal-flow compressor.

Figure 1.5a. Axial-Centrifugal-Flow Compressor.
1.12. ADVANTAGES OF TURBINE ENGINES
Keeping in mind the basic theory of turbine engines, compare the advantages and disadvantages of the turbine engine with the piston or reciprocating engine. The advantages are covered in the subparagraphs below, and disadvantages are discussed in paragraph 1.13.
a. Power-to-weight ratio. Turbine engines have a higher power-to-weight ratio than reciprocating engines. An example of this is the T55-L-l11. It weighs approximately 650 pounds and delivers 3, 750 shaft horsepower. The power-to-weight ratio for this engine is 5.60 shp per pound, where the average reciprocating engine has a power-to-weight ratio of approximately .67 shp per pound.
b. Less maintenance. Maintenance per hour of operation is especially important in military operations. Turbine engines require less maintenance per flying hour than reciprocating engines generally do. As an aircraft maintenance officer, this advantage will appeal to you because of a greater aircraft availability and lower maintenance hour to flying hour ratio. The turbine engine also has fewer moving parts than a reciprocating engine; this is also an advantage over the reciprocating engine.
c. Less drag. Because of the design, the turbine engine has a smaller frontal area than the reciprocating engine. A reciprocating engine requires a large frontal area which causes a great deal of drag on the aircraft. Turbine engines are more streamlined in design, causing less drag. Figure 1.6 shows one of the two nacelles that contain reciprocating engines in the old CH-37 cargo helicopter. Figure 1.7 shows the smaller frontal area of the turbine engines that power the CH-47 Chinook helicopter. Because of this, the engine nacelles are more streamlined in design, causing less drag.

Figure 1.6. Reciprocating Engine Nacelles on CH-37.

Figure 1.7. Turbine Engine Nacelles on CH-47.
d. Cold weather starting. The turbine engine does not require any oil dilution or preheating of the engine before starting. Also, once started, the reciprocating engine takes a long time to warm up to operating temperatures, whereas the turbine engine starts readily and is up to operating temperature immediately.
e. Low oil consumption. The turbine engine, in general, has a lower rate of oil consumption than the reciprocating engine. The turbine engine does not require the oil reservoir capacity to be as large as the reciprocating engine's; because of this, a weight and economy factor is an additional advantage.
1.13. DISADVANTAGES OF TURBINE ENGINES
Just like everything else, along with the advantages or the good, we have to take the disadvantages or the bad. This also holds true with the turbine engine. The disadvantages of the turbine engine are discussed in the following subparagraphs.
a. Foreign object damage. One of the major problems faced by the turbine engine is foreign object damage (FOD). A turbine engine requires tremendous quantities of air. This air is sucked into the engine at extremely high velocities, and it will draw up anything that comes near the inlet area. The turbine engines used in Army aircraft are fitted with filters around the engine inlet to prevent foreign objects from entering the engine and damaging the compressor vanes. However, even with this precaution, FOD is still a menace to turbine engine operation, as shown in figure 1.8.

Figure 1.8. Compressor Foreign Object Damage.
b. High temperatures. In the combustion chamber, the temperature is raised to about 3, 500° F. in the hottest part of the flame. Because this temperature is above the melting point of most metals, proper cooling and flame dilution must be employed at all times to insure that the engine is not damaged.
c. Slow acceleration. The acceleration rate of a turbine engine is very slow in comparison with that of a reciprocating engine. The pilot must be aware of the time lag in the turbine engine acceleration between the instant when power is requested and when power is available.
d. High fuel consumption. Turbine engines are very uneconomical when it comes to the amount of fuel they consume. The Lycoming T53 turbine engine, for instance, uses approximately 1.5 gallons per minute of fuel. Compare it to a reciprocating engine of approximately the same horsepower which has a fuel consumption rate of 1 gallon per minute.
e. Cost. The initial cost of a turbine engine is very high when compared to the cost of a reciprocating engine. For example the T53-L-13B engine costs about $63,000, and the cost of a reciprocating engine of approximately the same horsepower is $20,000.
1.14. SUMMARY
The two turbine engines commonly in use today are the turbojet and turboshaft. The turbine has surpassed the piston engine in design efficiency. The advantages of the gas turbine are a high power-to-weight ratio, less maintenance, and low oil consumption. Because of the small frontal area, turbines have less aerodynamic drag. The disadvantages are foreign object damage to the compressor vanes, high operating temperatures, and high fuel consumption. The turbine also has a slower acceleration rate. Because of the high operating rpm, all rotating parts must be in perfect balance. The cost to manufacture a turbine is much higher than that of a reciprocating engine. Aircraft designers have always been limited by the powerplants available for use on aircraft of new design. Their constant plea has been for higher power, less weight, and a more compact design; the turbine engine has been the answer to some, if not all, of their pleas.
GO TO: