Space


EELV Evolved Expendable Launch Vehicle

EELV Logo After many years of government-funded studies on the subject of modernized launch vehicle systems, the Air Force finally developed a "roadmap" in 1994 for the acquisition of Evolved Expendable Launch Vehicles (EELVs) to replace the DELTA IIs, ATLAS IIs, and TITAN IVs then in use at Cape Canaveral.

The EELV competition was expected to produce the next generation of launch vehicles to replace all medium to heavy launchers, Lockheed Martin's Atlas, Titan II and Titan IV series, and McDonnell Douglas's Delta series, with a single family of vehicles capable of launching medium and heavy payloads into orbit at a significantly lower cost. The EELV was expected handle the bulk of the U.S. government's launch requirements after the year 2000 and was also expected to be used for commercial applications.

Unlike earlier efforts to develop a new generation of space launch vehicles from a "clean sheet of paper," the EELV concept intended to capitalize on proven hardware found in the then current generation of DELTA II, ATLAS II/CENTAUR, and TITAN IV vehicles. The goal was the creation of a cost-efficient and reliable family (or families) of "right size" spacelifters based on standardized fairings, liquid core vehicles, upper stages, and solid rockets. Standard payload interfaces were touted as another way to save money and improve efficiency, though success in that area remained to be seen.

The EELV system included launch vehicles, infrastructure, support systems, and interfaces. The contractor was standardizing payload interfaces, launch pads, and infrastructure so that all configurations of each contractor's EELV family can be launched from the same pad and payloads can be interchanged between vehicles in the same class (i.e., medium, intermediate, or heavy). The EELV program would maintain current mass-to-orbit capability while increasing launch rate and decreasing costs. Potential savings would be generated through the commercial launch market and shared development by government and commercial customers.

EELV was important not only to reducing the launch costs of the Department of Defense, but also to the continued world-wide competitiveness of the US commercial launch industry. However, the Committee was concerned that the Department was focusing too narrowly on its national security requirements and not adequately reflecting the needs of the US commercial space launch industry. For example, in order to meet its projected reductions in life cycle costs, the EELV needed to capture at least 15 percent of the commercial market. This would be difficult to achieve since projections showed that the EELV would not be able to meet the requirements of as much as 42 percent of the estimated commercial market. If that was the case, then the Air Force will have developed a new family of launch vehicles that would be primarily used only for national security payloads, resulting in higher overhead costs to DoD, while missing an opportunity to maximize the competitive posture of US industry.



NEWSLETTER
Join the GlobalSecurity.org mailing list