Find a Security Clearance Job!

Military


Stryker FoV Survivability

Three block improvements are planned for the Stryker. A crew-installable add-on armor kit that provides 360-degree RPG-7 protection, an internal recoil-mounted 120mm mortar system, and embedded training that will be provided beginning with the third SBCT. Block improvements will be retrofitted to SBCTs 1 and 2 in subsequent years.

The Army said the Stryker family of vehicles are considered less vulnerable to small arms and weapons fire than the M113 family of vehicles. The crew and engine compartments of the Strykers are fully protected up to 14.5mm armor piercing (AP) rounds while the crew and engine compartments of the M113s are protected only up to 7.62mm AP rounds. Although a 14.5mm armor design was developed for the M113s, the armor was never produced and fielded.

The LAV's armor protection will stop 50-caliber bullets and protect against 152 mm airburst shells. The basic package on every vehicle is the basic steel hull, which protects against 7.62 mm bullets, and then a ceramic applique, which is added on give protection against 14.5mm machine guns. This is similar to the Bradley add-on armor that is appliqued on top. And just like Bradley armor, the Bradley's don't drive around with that. If there is a situation that requires it, the unit deploys with it, and applies it. The Strykers are protected by armor sufficient to withstand 14.5mm heavy machine gun fire and 152mm overhead artillery fire. A strengthened undercarriage protects the personnel inside from mines.

Beginning in October 2001 the Stryker underwent coupon testing, which is taking small squares of armor and firing at it with various caliber weapons and munitions at varying distances. After the tests, officials discovered that the initial armor proposed by the contractor was not suitable and changes in the armor were ordered in early 2002. When modifications are made to the armor, the vehicle will be able to stop 7.62mm and 14.5mm armor piercing ammunitions.

GM Defense delivered a new, denser ceramic-skin armor for Stryker in May 2002. In the summer of 2003 the first Stryker vehicles had problems with the armor not adequately protecting the crew from 14.5mm fire. This was fixed by backing the ceramic armor on the Strykers with a 3mm steel plate. Depending on the model, up to 126 tiles could be installed. When the LAV-III add-on armor is mounted, the LAV-III weighs 43,000 pounds, which precludes C-130 transport altogether.

The Army was concerned about the Rocket Propelled Grenade threat, the enemy's weapon of choice. So two new types of armor have been installed on the vehicles. The most obvious add-on to the discerning eye is called slat armor. It resembles a "bird cage" that will add three feet to the Stryker's width. The slat armor installed on the Strykers resembles a big catcher's mask that wraps around the vehicle. The armor is basically a grill of wire mesh that will cause the RPG to detonate away from the vehicle. Plans are in the works to add another type of armor package to the inventory. That add-on armor is called "reactive armor." Essentially that armor explodes when an RPG or other anti-tank round hits it. It's already on M-2 Bradley fighting vehicles.

United Defense Industries, Arlington, Va., received a $7.9 million contract from GM Defense 04 November 2002 to develop and test add-on applique armor that will stop RPG-7 rounds. The contract requires United Defense to develop and test the applique armor by February 2004. If it passes, the company could build 1,600 add-on armor kits by 2006.

Production Qualification Testing of the rocket-propelled grenade-level add-on armor began in May 2003 and found that the armor performance did not meet Army requirements. As a result, the Stryker program experienced delays in all add-on armor related testing to allow the contractor to refine its armor solution to meet Army requirements. Re-qualification of the new add-on armor solution resumed in September 2003 and will continue through February 2004.

Add-on armor for the Stryker adds approximately 7,000 lbs to the vehicle weight and approximately 12-14 inches to each side. To accommodate the increased weight, the tires were inflated to 90 psi and the Central Tire Inflation System (CTIS) was disengaged. As the vehicles moved from a hard surface to a softer one (in a grove of trees) the vehicle's tires sank into the soft ground. The winch on the Stryker is not sufficient to recover a Stryker with add-on armor mounted; therefore, some other vehicle recovery asset must be used.

Another challenge was the problem moving the vehicles down narrow two-lane roads while they had the add-on armor on the Strykers. The vehicles were unable to pass side by side. One driver had to pull off the road to make room for the other vehicle to pass. When he did this, the vehicle would sink into the dirt and require another vehicle to recover it. This made it important for the battalion staff and company-level leaders to ensure that they did detailed mission planning and route selection to reduce the possibility of two vehicles passing. While this does not appear to limit maneuver, it could cause temporary loss of momentum.



NEWSLETTER
Join the GlobalSecurity.org mailing list