Unified Launch Vehicles (ULV)
The Union Cabinet approved development of Semi Cryogenic Engine Technology for future Space Transportation Systems on 19 December 2008 at an estimated cost of Rs. 1,798 crores with a foreign exchange component of Rs. 588 crores. The objective is designing, fabricating and testing this advanced technology in India in six years time. This will be an important step towards self-reliance in advanced space transportation technology for India.
Storable liquid stages of PSLV and GSLV engines used presently release harmful products to the environment. The trend worldwide is to change over to eco-friendly propellants. Liquid engines working with cryogenic propellants (liquid oxygen and liquid hydrogen) and semi cryogenic engines using liquid oxygen and kerosene are considered relatively environment friendly, non-toxic and non corrosive. In addition, the propellants for semi-cryogenic engine are safer to handle & store. It will also reduce the cost of launch operations.
This advanced propulsion technology is now available only with Russia and USA. India capability to meet existing mission requirements. The semi cryogenic engine will facilitate applications for future space missions such as the Reusable Launch Vehicle, Unified Launch Vehicle and vehicle for interplanetary missions.
The objective of the Semi Cryogenic Engine Development is to power the future heavy lift Unified Launch Vehicles (ULV) and Reusable Launch Vehicle (RLV) of India. This semi cryogenic engine, which uses a combination of cryogenic as well as earth storable propellants, developing a thrust of 2000 kN, is planned as the booster engine for the Common Liquid Core of ULV. This engine uses Liquid Oxygen and Kerosene as propellants. The engine is planned to be developed and qualified over a span of 6 years. In this, the first four years is planned for subsystem development and the remaining two years will be used for development and qualification of the engine. The facilities needed for testing also has to be made ready in 4 years.
The Preliminary Design Review (PDR) for Semi-cryogenic engine development has been completed. Preparation of fabrication drawings of subsystems have been completed. A MOU has been signed with NFTDC for the realisation of copper alloy for Thrust chamber. Single element Pre-Burner (PB) injector realised and injector spray charaterisation using PIV was carried out. Test facility for single element pre-burner commissioned at PRG facility, VSSC. Semi Cryo Test facility design by M/s Rolta has been completed.
Design of Semi Cryo Engine including heat exchanger and ejector is competed. Fabrication drawings and documents are generated based on the PDR and joint reviews. Configuration design of subscale engine is completed. Preliminary Design Review (PDR) of Hydraulic Actuation System (HAS) and Hydraulic Power System (HPS) for Engine Gimbal control is completed and Technical specifications are finalized.
Single Element Pre-Burner injector element has been hot tested successfully. Ignition of LOX/ kerosene propellant with hypergolic slug igniter and flame holding, demonstration of safe handling of pyrophoric fluid TEA, validation of start sequence, characterization of injector elements and qualification of Hayness-214 material are the major achievements of the tests.
Design of single element thrust chamber is completed and fabrication drawings are generated. Single element thrust chamber injector elements are realized and cold flow tests were carried out. Special pre burner which will provide hot gases for testing the single element thrust chamber has been realized.
NEWSLETTER
|
Join the GlobalSecurity.org mailing list |
|
|