The Largest Security-Cleared Career Network for Defense and Intelligence Jobs - JOIN NOW

Space


Kinetic Energy Rod Warhead

Destroying missiles, aircraft, re-entry vehicles and other targets falls into three primary classifications: "hit-to-kill" vehicles, blast fragmentation warheads, and kinetic energy rod warheads.

"Hit-to-kill" vehicles are typically launched into a position proximate a re-entry vehicle or other target via a missile such as the Patriot, Trident or MX missile. The kill vehicle is navigable and designed to strike the re-entry vehicle to render it inoperable. Countermeasures, however, can be used to avoid the "hit-to-kill" vehicle. Moreover, biological warfare bomblets and chemical warfare submunition payloads are carried by some threats and one or more of these bomblets or chemical submunition payloads can survive and cause heavy casualties even if the "hit-to-kill" vehicle accurately strikes the target.

Blast fragmentation type warheads are designed to be carried by existing missiles. Blast fragmentation type warheads, unlike "hit-to-kill" vehicles, are not navigable. Instead, when the missile carrier reaches a position close to an enemy missile or other target, a pre-made band of metal on the warhead is detonated and the pieces of metal are accelerated with high velocity and strike the target. The fragments, however, are not always effective at destroying the target and, again, biological bomblets and/or chemical submunition payloads survive and cause heavy casualties.

The two primary advantages of a kinetic energy rod warheads is that 1) it does not rely on precise navigation as is the case with "hit-to-kill" vehicles and 2) it provides better penetration then blast fragmentation type warheads.

To date, however, kinetic energy rod warheads have not been widely accepted nor have they yet been deployed or fully designed. The primary components associated with a theoretical kinetic energy rod warhead is a hull, a projectile core or bay in the hull including a number of individual lengthy cylindrical projectiles, and an explosive charge in the hull about the projectile bay with sympthic explosive shields. When the explosive charge is detonated, the projectiles are deployed.

The cylindrical shaped projectiles, however, may tend to break and/or tumble in their deployment. Still other projectiles may approach the target at such a high oblique angle that they do not effectively penetrate the target.

A higher lethality kinetic energy rod warhead can be effected by the inclusion of means for angling the individual projectiles when they are deployed to prevent the projectiles from tumbling and to provide a better penetration angle; by selectively directing the projectiles at the target, and also by incorporating special shaped projectiles.

This features a kinetic energy rod warhead with aligned projectiles. The warhead comprises a hull, a projectile core in the hull including a plurality of individual projectiles, an explosive charge in the hull about the core, and means for aligning the individual projectiles when the explosive charge deploys the projectiles.

In one example, the means for aligning the projectiles includes a plurality of detonators spaced along the explosive charge configured to prevent sweeping shock waves at the interface of the projectile core and the explosive charge to prevent tumbling of the projectiles. In another example the means for aligning includes a foam body in the core with orifices therein, the projectiles disposed in the orifices of the body. In still another example, the means for aligning includes at least one flux compression generator which generates an alignment field to align the projectiles. Typically, there are two flux compression generators, one on each end of the projectile core. Each such flux compression generator includes a magnetic core element, a number of coils about the magnetic core element, and an explosive for imploding the magnetic core element.

The hull is usually either the skin of a missile or a portion of a "hit-to-kill" vehicle. In most embodiments the explosive charge is disposed outside the core. But, in one example, the explosive charge is disposed inside the core. A buffer material such as foam may be disposed between the core and the explosive charge.

The projectiles are typically lengthy metallic members made of tungsten, for example. In one example the projectiles have a cylindrical cross section and flat ends. In the preferred embodiment, however, the projectiles have a non-cylindrical cross section: a star-shaped cross section or a cruciform cross section. Preferably, the projectiles have pointed noses or wedge-shaped noses.

To date, however, kinetic energy rod warheads have not been widely accepted nor have they yet been deployed or fully designed. The primary components associated with a theoretical kinetic energy rod warhead is a hull, a projectile core or bay in the hull including a number of individual lengthy cylindrical projectiles, and an explosive charge in the hull about the projectile bay with sympathetic explosive shields. When the explosive charge is detonated, the projectiles are deployed.

The projectiles, however, may tend to break and/or tumble in their deployment. Still other projectiles may approach the target at such a high obliquity angle that they do not effectively penetrate the target. See "Aligned Rod Lethality Enhanced Concept for Kill Vehicles," R. Lloyd "Aligned Rod Lethality Enhancement Concept For Kill Vehicles" 10th AIAA/BMDD TECHNOLOGY CONF., July 23-26, Williamsburg, Va., 2001. To date, the focus has been on long cylindrical flat ended projectiles with a high length to diameter ratio. This shape for the projectiles, however, is not optimized from the standpoint of strength, weight, packaging efficiency, penetrability, and lethality.

A higher lethality and lower weight kinetic energy rod warhead can be effected by the inclusion of penetrators having non-cylindrical cross sectional shapes and/or pointed ends and which can be packaged more efficiently. This invention results from the further realization that a higher lethality kinetic energy rod warhead can be effected by the inclusion of means for aligning the individual projectiles when they are deployed to prevent the projectiles from tumbling and to provide a better penetration angle by selectively directing the projectiles at the target.




NEWSLETTER
Join the GlobalSecurity.org mailing list



 
Page last modified: 21-07-2011 00:47:08 ZULU