April 2002 Excerpt
Machinery
Systems and Components
An Overview
By Arnold N. Ostroff , reprinted from NSWCCD Tech Digest
PHILADELPHIASince
the early 1900s, NSWCCD has served as the Navys leader in the development,
evaluation, and integration of marine machinery systems and components. From
formative work in naval fuel oils and machinery standards to todays
developments in electric drive and fuel cells, the Division has been at the
forefront in advancing naval machinery technology and providing systems that
enable the Navy to maintain its military dominance.
Machinery systems and components represent the most diverse and numerous equipment
installed on a modern warship. They include items such as engines, boilers,
gears, shafting, bearings, pumps, air compressors, hydraulics, piping and
valves, distillation plants, heat exchangers, heating and refrigeration systems,
electric motors and generators, electric power conversion and control systems,
electric distribution systems, elevators, conveyors, cranes, steering systems,
underway replenishment, habitability, and hull outfitting systems.
Todays machinery systems and components are more complex and intelligent
as a result of automation, network connectivity, and built-in diagnostics.
They interact with other ship systems and are designed to meet stringent requirements
that often relate to other ship design disciplines such as signature and silencing
systems, structures and materials, and vulnerability and survivability systems.
This article describes several current technology areas that demonstrate the
diversity and sophistication of todays machinery systems. They represent
enabling technologies that are expected to significantly influence future
ship machinery systems applications.
Fuel Cells
Recent advances in fuel cell technology make fuel cells increasingly attractive
for electric power generation on naval ships, as well as in commercial marine
applications. These include significant increases in cell and stack power
density, the development of compact fossil fuel reformers, and emerging commercialization
efforts. A significant technology push over the last decade by the U.S. Department
of Energy and commercial partners may soon enable fuel cells to compete with
commercial diesel and gas-turbine-powered generators. In 1997, the Office
of Naval Research (ONR) initiated an advanced development program to demonstrate
a ship service fuel cell (SSFC) power generation module. When completed, this
program will provide the basis for new fuel cell based ship service power
systems that will be a viable and attractive option for future U.S. Navy surface
ships.
During the initial phase of the ONR SSFC program, competitive conceptual designs
of 2.5 MW power plants were prepared, as were critical component demonstrations
designed to reduce development risk. Two fuel cell systems were testeda
molten carbonate system and a proton exchange membrane (PEM) system. After
critical review of both designs, the molten carbonate system was chosen to
advance in the second phase of the program, which includes the construction
of a nominal 500-kW fuel cell module. This system will be land based tested
at the Divisions Philadelphia site in 2003. After testing, the module
will be installed aboard a ship for an at-sea demonstration the following
year. Further development of PEM systems is underway to advance technology
for diesel fuel reforming.
Quiet Electric Drive
The objective of the ONR-sponsored Quiet Electric Drive (QED) program is to
demonstrate signature reduction technologies applicable to ship electric drive
propulsion and auxiliary systems and to enhance warfighting effectiveness,
commonality, and affordability across platforms. The concept being pursued
is integrated hydrodynamic, hydroacoustic, and structural acoustic signature
control through the use of electric drive propulsion. The ONR Electrical Systems
Task supports this advanced development program. In this task, contributing
technologies are investigated, developed, and transitioned to the QED program
for demonstration in a direct Fleet application. There are significant strategic
naval payoffs associated with the QED program.
- Reduced acoustic signature
over the full range of submarine operating speeds.
- Improved affordability
through increased propulsion system modularity, simplification, and a reduced
need for machinery isolation.
- Additional signature
reduction when this technology is applied to auxiliary systems, such as
main seawater pumps, secondary propulsion motors (see photo on page 20),
and other submarine machinery.
Thermal
Management
Non-chlorofluorocarbon chillers developed by NSWCCD are being installed on
U.S. Navy surface ships and submarines. They are efficient, environmentally
friendly, and exhibit reduced fuel consumption, acoustic signatures, and equipment
footprint. As effective as these new chillers are today, they may prove to
be unsuitable for future cooling requirements because auxiliary systems of
the future are being designed for decentralized and autonomous operation.
The new architectures will require cooling systems that are also decentralized,
programmable, and capable of operating in a zonal configuration. Furthermore,
the transition from mechanical to electrical auxiliary equipment will result
in significantly increased power density and heat dissipation. Increasing
the number of cooling units (smaller, more efficient, and localized) may prove
to be the means to provide a suitable environment for the crew and equipment.
Some alternative cooling technologies being investigated are listed below.
- Thermoelectric Air
ConditioningRecent breakthroughs in thin-film thermoelectric materials
have the potential for efficient solid-state cooling with no environmental
impact.
- Magnetic RefrigerationThis
is an emerging technology that offers the potential for high-energy and
efficiency with minimal environmental hazard. It is based on the use of
an active magnetic regenerator to produce chilled water efficiently.
- Thermoacoustic CoolingThis
employs sound waves to produce cooling. Pennsylvania State University is
building a 3-ton cooling system that will be tested in the near future.
New heat exchanger designs using novel methods and materials to remove heat passively are being explored as well.
- Dry sump heat exchangers
that use heat pipe technology to eliminate closed-water loops, external
heat exchangers, and piping arrangements.
- Waste heat recovery
systems that turn the unwanted heat back into useful energy that could power
secondary equipment or even be used to produce supplemental cooling.
- Through-the-hull heat
exchangers that eliminate the need for large, bulky freshwater-to-seawater
heat exchangers.
Composite
Construction Materials for Naval Machinery and Equipment
During the last two decades, the Navy has demonstrated the feasibility of
propulsion and auxiliary machinery made of fiber-reinforced thermosetting
resins (e.g., epoxies, vinylesters, and fire-resistant phenolics) in a number
of shipboard applicationspropulsion shafting, piping systems, centrifugal
pumps, ball valves, heat exchangers, and supply-intake ventilation ducting
(see figure below).
Composite machinery components offer a number of advantages, such as corrosion/erosion-resistance,
galvanic compatibility with metals, reduced life-cycle cost, improved structural
efficiency, and reduced weight. Furthermore, composites are well suited to
support numerous applications in future ship and autonomous vehicle concepts
because of advances in the development of conductive reinforcing agents, as
well as conductive polymer matrices. As a result of successful at-sea trials,
long-term development investments, and growing commercial use of composite
construction materials in the United States, a wide variety of composite machinery
components are becoming available for consideration in surface ship design
and construction. Current efforts to expand the application of composite machinery
are directed toward the identification of appropriate commercial specifications,
standardization strategies, and design guidance to ensure compliance with
performance and safety standards.
Electric Actuators for Submarines
The use of electric actuators on submarines is a potential enabling technology
that will reduce manning via the eventual replacement of maintenance intensive
hydraulic actuators and fluid distribution systems. These systems operate
several hundred valves, control surfaces, weapons handling, and other equipment
in todays submarines. Their output torques range from 2.5 in-lb (small
1/4-turn valves) to tens of millions of in-lb (control surfaces). At present,
ONR and NAVSEA (SEA 93R) are developing electric actuator technology to address
the wide range of actuation demands and satisfy all of the submarine service
requirements.
Submarine actuator system performance requirements include minimal acoustic
signature, resistance to shock and vibration, electromagnetic interference
emissions and susceptibility, corrosion resistance, power density, fail-safe
operation, back-up power, reliability, and maintainability. A wide variety
of electric actuator systems are available or under development. Mature configurations
such as electric motor and geared speed reducer are common in commercial and
aerospace applications, but have not been qualified to satisfy submarine service
requirements. New types of electric actuators (such as piezo-electric, magnetostrictive,
electrohydrostatic, and shape-memory alloy) are being developed and show promise.
The wide range of actuator output torque requirements suggests that a variety
of electric actuator systems eventually will be needed for submarine actuator
applications.
Integration of electric actuators on submarines is expected to be a long-term
effort. The qualification program for electric actuator systems must include
laboratory and shipboard tests to demonstrate satisfactory performance for
long-term submarine service. Initially, they would be installed to replace
hydraulic actuators in non-vital, non-sea-connected systems to obtain operating,
reliability, and maintenance data. The submarine community has relied on hydraulic
actuators for over 50 years. As confidence in the performance and reliability
of electric actuator systems increases, they could replace the hydraulic fluid
system, and the anticipated maintenance and manpower savings would be realized.
Machinery Automation and Control
Many of the machinery and auxiliary systems on Navy ships rely heavily on
human intervention to operate the system and perform damage control functions.
With the goal to reduce manning on the next generation of Navy ships, affordable
and survivable automation technology is being investigated to replace the
crew function through its deployment. Some of the major issues associated
with implementing an automation system for a naval warship include:
- Ensuring that the system
is highly survivable.
- Integrating multiple
automated control systems at the ship control level.
- Designing an affordable
system to optimize control and fight-through capability.
Under the sponsorship
of NAVSEA (SEA 05R), ONR, and the DD 21 Program Office, the Division developed,
tested, and demonstrated control technologies to meet the manning reduction
initiatives. Efforts focused on the development of highly distributed control
systems and networks for improved survivability and automation to reduce manpower
requirements for both machinery systems and distributed auxiliary systems.
Recent research and development tasks used distributed control and network
technology to accomplish the following.
- To demonstrate the
techniques to detect and isolate leak and rupture damage from a warhead
event and to reconfigure the highly distributed fluid system to regain the
maximum capability possible with the remaining resources.
- To operate and manage
the resources and distribution of a highly distributed closed- loop fluid
system using control algorithms that also are distributed to all of the
system components with no central controller.
- To demonstrate advanced
network healing technology on a small Navy surface ship using advanced distributed
control algorithms.
Advanced
Sensors and Networks
The research and development of advanced sensors is a multidisciplinary field
serving machinery, damage control, and materials applications. Recently, the
technologies employed by the Division to serve Fleet needs included fiber
optics, and ultrasonic and microelectro-mechanical systems (MEMS). Under programs
primarily directed by ONR, the Division develops sensors and data acquisition
systems that provide advanced capabilities in the measurement of flow, pressure,
proximity, current, temperature, strain, material damage, wear, and other
parameters. Current development efforts are shown below.
- An ultrasonic hull
damage sensor array that locates and estimates, in real time, the size of
hull penetrations due to damage.
- A Bragg grating fiber
optic strain sensor array that measures strain in absolute units (allowing
for removal and reattachment of electronics) and allows real time/long-term
monitoring.
- A fiber optic bearing
wear sensor that remotely measures the wear of outboard water-lubricated
propulsion bearing staves.
- Integrated fiber optic
current and temperature sensors to measure such parameters within electrical
components.
To operate with a reduced
crew, a ship must have a reliable, accurate, and timely information system
to monitor vital environmental, structural, machinery, and personnel conditions.
An ONR-sponsored advanced technology demonstration called Reduced Ship-crew
by Virtual Presence (RSVP) is investigating the necessary technologies. The
RSVP program will demonstrate elements of key high-risk technology areas in
the implementation of a Navy shipboard wireless sensor network to support
reduced ship manning. The program has defined three major areas of high-risk
technology application development.
- Advanced sensors in
a high-density configuration.
- Wireless shipboard
intra-compartment networks.
- Data fusion and advanced
reasoning to support situational awareness.
Land-based evaluation
of prototype components on full-scale naval machinery has been completed;
at-sea tests commenced late in 2001. The DD(X) shipbuilder will use information
provided by the RSVP program to select technologies that will support a reduced
crew size.
Future Machinery Technology Developments
In January 2000, the Secretary of the Navy announced that the new Land Attack
Destroyer (DD(X)) would be the Navys first ship class designed and built
during the 21st century to be powered by electric drive, featuring an integrated
power architecture. Integrated power is a flexible, open-architecture approach
that permits any generating unit to supply propulsion or ship service power
to support ship operational priorities. Looking beyond DD(X), there is strong
interest to make future ships all-electric, thereby eliminating pneumatic,
hydraulic, and other maintenance-intensive auxiliary systems. All-electric
ships will also enable the deployment of high-energy weapons for long-range
fire support. Operation of these weapons systems requires huge amounts of
power over a very short time period, and depends on sophisticated high-power
solid-state switching and pulse-forming networks. Greater dependency on
integrated power systems and the expanded use of electric power throughout
the ship places a greater demand on the technologies that provide and maintain
electrical distribution systems and their availability, survivability, and
power quality.
It is anticipated that future electric power systems will operate at higher
voltage levels and use superconducting electric machines and energy storage
systems. Superconductive machinery offers the advantages of reduced size and
weight, high efficiency, design simplicity, and reduction of components that
contribute to the platforms signature.
Intelligent systems, advanced sensors, and the greater use of electromechanical
actuators are beginning to play a major role in the design of future machinery
systems and equipment. The systems are becoming more modular, with plug
and play capability, and will be logically interconnected and distributed
via advanced ship-wide networks, thus enabling unmanned decision-making and
reconfiguration. Other future developments include more energy-dense and environmentally
compliant propulsion systems, decentralized auxiliary systems, enhanced shaftline
components, and advanced machinery for autonomous vehicles. Fuel cells are
expected to be a significant source of shipboard electricity, especially for
zonal power generation. In the near term, hydrogen for the fuel cells will
be obtained from liquid hydrocarbon fuels; however, future developments will
focus on the extraction of hydrogen from seawater to reduce dependence on
fossil fuels. Advances in machinery technology cannot be made without attention
given to the reduction of noise signatures. Future machinery designs for submarines
and surface ships will demand improved stealth via reduced acoustic and electromagnetic
signatures without degradation of performance levels.
NEWSLETTER
|
Join the GlobalSecurity.org mailing list |
|
|