Table 2-6. Comparison of the potential environmental impacts of the alternatives for H-Canyon plutonium-239 solutions.a | | Alternatives | | | | | | | |--|-----------------------------|----------------------------|---------------------|---|---|-----------------------------|----------------------| | Factors | Continuing
Storage | Processing to Metal | Processing to Oxide | Blending Down
to Low Enriched
Uranium | Processing and Storage
for Vitrification
(DWPF) | Vitrification
(F-Canyon) | Improving
Storage | | Health effects of Normal Operations | | | | | | | | | Radiological health effects (10-year totals): | | | | | | | | | Population latent cancer fatalities
Worker latent cancer fatalities | $0.00025 \\ 0.0052$ | $0.00025 \\ 0.044$ | 0.0055
0.04 | NA ^b
NA | 0.041
0.02 | 0.00023
0.021 | NA
NA | | Health effects from facility accidents ^c (projected latent cancer fatalities) | 4.1 | 6.5 | 4.1 | NA | 4.1 | 6.5 | NA | | Health effects from transportation (projected latent cancer fatalities) Incident-free (involved worker) Accidents (offsite population)f | 0.00172 ^d
2.0 | 0.0022 ^e
2.0 | 0.00195
2.0 | NA
NA | 0.00374 ^d
2.0 | 0.00146 ^e
2.0 | NA
NA | | Air resources Nonradiological - Nitrogen oxide incremental concentration at SRS boundary (highest annual, micrograms per cubic meter) | 0.012 | 0.14 | 0.033 | NA | 0.083 | 0.096 | NA | | Water resources Lead (micrograms per liter) in Upper Three Runs Creek | 3.2 | 3.3 | 3 | NA | 3 | 3.2 | NA | | Utilities (10-year totals)
Electricity usage (megawatt-hour) | 132,990 | 135,462 | 106,221 | NA | 150,579 | 124,310 | NA | | Waste management (10-year totals) High-level liquid waste (million liters) Equivalent DWPF canisters Saltstone generation (cubic meters) | 1.2
20
3,300 | 1.3
24
3,500 | 0.68
11
1,800 | NA
NA
NA | 6.8
57
19,000 | 1.0
17
2,700 | NA
NA
NA | | Transuranic waste generation (cubic meters) | 0 | 32 | 160 | NA | 0 | 0 | NA | | Hazardous/mixed waste generation (cubic meters) Low-level radioactive waste generation (cubic meters) | 0
5,600 | 0
7,500 | 190
6,600 | NA
NA | 0
6,400 | 0
4,800 | NA
NA | a. Includes transportation of associated radioactive waste. b. NA = Not applicable. c. Assumes highly unlikely occurrence of maximum consequence accident. - d. Waste transportation only. - e. No approved packaging for material transport; waste transport only. - f. Maximum reasonably foreseeable latent cancer fatalities from medium probability accident based on the shipment of transuranic waste.