Reference concepts derived from stakeholder objectives, historical data, and timing / sequence constraints.

7 Design Reference Cases

Key Aspects of DRC1

- Global access
- Launch anytime
- Landing location determined from robotics
- Nominal crew of 4
- Surface excursions of 10 days
- Lunar base grows for 1-year tours of duty (up to 8 crew)
- Commercial opportunity potential after 2020
Boeing Highlights

- Architecture driven from the Vision, lunar exploration objectives, lunar resource utilization, and national security
- Numerous architecture / design trades

Architecture Summary
- Earth-Moon L1 Rendezvous
- LEO aggregation of elements
- Reusable lunar module
- Single stage LM
- Anytime returns; L1 gateway
- Trip time extended by L1 operations
- 14 days - continuous/long duration lunar stays

Trade Results show masses needed in LEO for various cases

Assumption & Ground rules:
- Lunar polar water ice may be accessible
- Necessary technologies at TRL 6 by PDR
- Two launch providers
- ETO capability limited to 2045+ MT LV
Lockheed Martin Highlights

Guiding Principals
- Simultaneously address all Vision Objectives
- Start with Mars and work backwards
- Answer fundamental questions to determine post-2025 future of exploration on Moon, Mars, Beyond

Numerous trades being conducted

Exploration Approach
- Mars robotic precursors (orbiters and landers) already leading the way
 - Pursuing water/life clues
 - Providing global access to H2O ice at poles/near poles
 - Soon to be performing combined science, ISRU, engineering testbed missions
 - Improving rover duration and speed
- Human missions likely to use fixed, near-equatorial site for surface stays of 30-630 days
 - Near the most desirable sites
 - Low altitude to minimize entry/descent/landing difficulty
 - Enables incremental build-up
 - Most energy/mass efficient location
 - More favorable thermal environment (20°C to -140°C)
 - Safest approach
 - Best solar fluence

POD Lunar Architecture Features (2018 -2023)

- **Remote operations** as warranted (e.g., robotic H2O pilot at southern pole if ice is found)
- **Solar Flare/Warning System(s)**
- **Sun**
- **Direct Earth reentry and water recovery operations**
- **Consolidated Mission Control**
- **ETR launch operations**
 - Cargo-only missions (Two 70mT)
 - Crew missions (Two 70mT or 70mT combined with single stick)
- **LEO automated rendezvous and assembly**
- **Low Lunar Orbit (LLO) CEV/LSAM staging**
- **TBD on-orbit CEV/LSAM lifeboats for anytime rescue**
- **Communications via direct nearside broadband + global narrowband TC&C minisats**
- **TBD on-orbit CEV/LSAM lifeboats for anytime rescue**
- **Reconnaissance Orbiters (e.g. LRO)**
- **Surface Science (e.g. geoscience networks)**
- **Crew field work**
- **Ground processing** (crew, samples, systems)
- **Roving robotic explorers**
 - Sample returns (e.g. Moonrise @ Aitken Basin)
 - Astronomical observatory proof of concepts
- **Locked Martin Highlights**
 - Guiding Principals
 - Simultaneously address all Vision Objectives
 - Start with Mars and work backwards
 - Answer fundamental questions to determine post-2025 future of exploration on Moon, Mars, Beyond
 - Numerous trades being conducted
 - Exploration Approach
 - Mars robotic precursors (orbiters and landers) already leading the way
 - Pursuing water/life clues
 - Providing global access to H2O ice at poles/near poles
 - Soon to be performing combined science, ISRU, engineering testbed missions
 - Improving rover duration and speed
 - Human missions likely to use fixed, near-equatorial site for surface stays of 30-630 days
 - Near the most desirable sites
 - Low altitude to minimize entry/descent/landing difficulty
 - Enables incremental build-up
 - Most energy/mass efficient location
 - More favorable thermal environment (20°C to -140°C)
 - Safest approach
 - Best solar fluence

Normalized Cost for 5 Missions

- **2-Stage expendable LSAM LLO rendezvous (POD)**
- **2-Stage expendable LSAM L1 rendezvous**
- **1-Stage reusable LSAM LLO rendezvous**
- **1-Stage reusable LSAM L1 rendezvous**

Lockheed Martin Highlights

Guiding Principals
- Simultaneously address all Vision Objectives
- Start with Mars and work backwards
- Answer fundamental questions to determine post-2025 future of exploration on Moon, Mars, Beyond

Numerous trades being conducted

Exploration Approach
- Mars robotic precursors (orbiters and landers) already leading the way
 - Pursuing water/life clues
 - Providing global access to H2O ice at poles/near poles
 - Soon to be performing combined science, ISRU, engineering testbed missions
 - Improving rover duration and speed
- Human missions likely to use fixed, near-equatorial site for surface stays of 30-630 days
 - Near the most desirable sites
 - Low altitude to minimize entry/descent/landing difficulty
 - Enables incremental build-up
 - Most energy/mass efficient location
 - More favorable thermal environment (20°C to -140°C)
 - Safest approach
 - Best solar fluence
Northrop Grumman Highlights

♦ Guiding Principles
 • Simultaneously address each of the Vision Objectives
 • Start with Mars and work backwards
 • Answer the fundamental questions to determine the post-2025 future of exploration on Moon, Mars, and Beyond

♦ Numerous trades being conducted

♦ Exploration Approach
 • Polar landing site
 • 180 days surface duration
 • Safe-haven abort; Implicit Rescue with Responsiveness
 • 0-4 crew members

♦ Mars preparation has two components
 • Technology demonstration and test
 • Operational experience: “Lessons Learned”
♦ Vision Mapped to Objectives, Missions, Functions, and Requirements

♦ Numerous trades being conducted

♦ Example Habitation Alternatives
 • Multiple Outpost Capability Anywhere on Lunar Surface?
 • Lunar Logistics Base: Establish Single Lunar Base and Provide for Distributed Exploration Capability?
 • Lunar Orbiter: Provide 90 Day Capable Lunar Orbiter With Surface Excursion Capability Anywhere on Lunar Surface?

♦ Observations
 • Coupling of Lunar Base Selection and Lunar Abort/Safe Haven Capability
 • It’s Primarily a Transportation and Logistics Problem
 • Lunar/Mars Operations Need to Be Compatible and Traceable
 • Need a Budget Strategy at Spiral Transitions to Ensure Sustainability
Vision for Space Exploration drives exploration strategy
- Common infrastructure elements across missions
- Not dependent on changes to political viability of a single mission

Numerous trades being conducted
- Mission architecture related
- System sensitivities
- Technologies

Applicability of Lunar Operations to Mars Exploration Identified

Key Architectural Construct
- Initial basing at South Pole
- Low-Lunar Orbit staging for cargo
- L1 staging for crew
- Lunar regolith used for crew protection from lunar environment
- Launch vehicle strategy being traded
- 3 crew members provide the operational and safety margins desirable at minimum cost
- Critical technologies identified
SAIC Highlights

♦ Study Status
 • Preliminary analysis of Initial Concept for Technical Solution (ICTS) 20-mission campaign is complete
 • Conservative assumptions have been made throughout this preliminary analysis
 • Results indicate that the baseline campaign is both feasible and achievable
 • Additional trade studies are underway

♦ Campaign Studies Conducted
 • Mass Flow
 • Loss of Mission / Loss of Crew
 • Risk Mitigation Measure
 • Launch Manifest Trades

♦ Figures of Merit Assessments
 • Safety & Mission Success: LOM & LOC risks have been identified and initial values generated
 • Effectiveness: Being explored
 • Extensibility: Campaign is based around developing long-duration mission capability without resupply (in preparation for Mars surface missions) and selected subsystems
 • Affordability: Under development
Stakeholder Value Analysis Approach:
- Stakeholders identified (14)
- Stakeholder needs defined (~90)
- Exploration objectives (24)
- Technical architecture proximate measures (~18)
- Indicator metrics (~40)

Mars Back Emphasis

QFD Tool utilized to screen options
- For over 600 itineraries, and fixed technology/operational decisions, optimization determines best mix of technologies

Numerous architecture, system, and technology trades being conducted.

Key Findings to Date
- A sustainable exploration program must focus on delivering value throughout its lifetime to all stakeholders
- A Mars-back focus should be maintained throughout the architecture and mission development process
Schafer Highlights

Architecture Overview
- Emphasizes Gateway Architecture
- Architecture Fosters In Situ Resource Utilization (ISRU)
- L1 Refueling and resupply
- Direct return from lunar surface
- Off Earth Robotic Assembly, Set-up, and Operation For All Infrastructure
- Robotic Reconnaissance Missions Select Near Lunar Equator And South Pole Locations For Probable Extended Presence And Continued Exploration
- Assume One Crewed Mission Per Year Over 5-year Campaign In Spiral-2

Drivers and Sensitivities
- CEV Mass Strongly Influences Propellant Required
- Radiation Shielding Of CEV Is Severe Penalty
- Launch Of Propellant Mass To LEO Dominates All Architectures
- CONUS Landing Stresses CEV For Direct Return
- LV Capabilities And Lift Mass To LEO
- CEV Crew Size
- Reliability Of Storage And Transfer Of Cryo Propellant In Space
- ISRU Propellant Or LunOX Production Effectiveness For Future Spiral-3 Missions
- Abort Scenarios For Crew Safety Determine Size And Mass Of L1 Infrastructure
SpaceHab Highlights

♦ **Architecture Overview**
 - Maximize system modularity to the greatest extent possible
 - Each element will have the capability to operate alone or in conjunction with other elements
 - All non-crewed elements are launched on commercial Expendable Launch Vehicles (ELVs) with a lift capability of at least 15 metric tons.
 - The Crew Exploration Vehicle (CEV) is launched on a human rated launch system.
 - The CEV is sized to accommodate four crewmembers.
 - Reuse of systems

♦ **Key Technologies Identified to Date**
 - Automated Rendezvous, Proximity Operations and Docking (ARPOD)
 - Liquid Cryo Propellant Management
 - Extended-duration power generation (Nuclear Power)
 - Interplanetary communications relay
 - Regenerative ECLSS
 - Radiation Shielding
t-Space Highlights

♦ An Engine for Free Enterprise
 • Pay-for-results rather than pay-for-analysis
 • Businesses can grow from earnings
 • NASA-commercial partnerships will build a more resilient system
 • With NASA as an enabling partner, firms can transform space into a net generator of tax revenues instead of an endless consumer of them

♦ An Open Frontier
 • Government leadership rather than government ownership
 • Flotilla expeditions, not single vehicles
 • Smaller, simpler vehicles
 • For the first 20-40 expeditions, it will be cheaper to use more propellant than to create new optimized vehicles (lunar lander)
 • Simplicity equals reliability
 • Enable commercial passenger markets

♦ Mission Definition
 • Land at south pole quickly
 • Each expedition builds in-space infrastructure
 • Public must see understandable value