Chapter 8. Deployment Planning

An effective AGS deployment capability enables the MAGTF ACE to establish and maintain a viable expeditionary force. The MWSS must be capable of deploying under a variety of conditions and configurations. This chapter is an overview of MWSS deployment, employment, and redeployment planning considerations and organization.

PREDEPLOYMENT

The organization and employment of AGS are accomplished by task-organizing elements of an MWSS to fit the particular support requirement of the MAGTF ACE. A task-organized MWSS will normally deploy in three phases:

1. Advance party.
2. Main body.
3. Rear party.

Each phase encompasses specific tasks. Normally, considerable base preparation is required before the arrival of the ACE main body and is accomplished by a task-organized advance party. Once the main body arrives, the advance party reverts to the control of the parent organization. The main body is responsible for sustained operations and air base development and improvement. A task-organized rear party remains behind to provide coordination for redeployment operations.

Requirements

The following steps provide a systematic approach in determining support requirements and in task-organizing the MWSS to fulfill AGS requirements.
Step 1
The MWSG reviews the ACE operations order, identifies AGS requirements, and assigns an MWSS to support the deploying ACE. If possible and time permitting, the MWSG/MWSS should participate in SLRP operations to assess potential FOB sites and determine site capabilities and limitations from an AGS standpoint. If conducting an SLRP is unfeasible, previous SLRP data can be used to help MWSG/MWSS planners in determining site potential and AGS requirements.

Step 2
The MWSS analyzes the mission to determine specific and implied AGS tasks and begins developing the concept of AGS for the ACE commander’s approval. During the development of the AGS concept, the MWSS begins constructing the ABMP, the base camp layout, the ABGD plan, and the BRAAT plan.

Step 3
Once the concept of AGS is approved, the MWSS develops the T/O and T/E for each of their advance party, main body, and rear body elements. Additionally, the MWSS identifies personnel, equipment, and material requirements needed to support the concept of the AGS plan based on the availability of airlift, sealift and the employment of maritime pre-positioning ships (MPS).

Step 4
MWSG and MWSS, through the MAW G-4 and ACE S-4, coordinate with other ACE and MAGTF support agencies (e.g., MALS, CSSE) to provide for logistical requirements beyond the MWSS’s capability.

Step 5
The MWSS provides the ACE with AGS input for the ACE operations order and the finished ABMP, base camp layout, ABGD plan, and
BRAAT plan products. The MWSS also publishes an internal operations order/letter of instruction, which includes the—

2. Command relationship between the ACE, MWSS, and CSSE.
3. Procedures for obtaining support from the MWSS and CSSE.

Task Organization

Task organization ensures an effective support element that is tailored to meet the specific requirements of a given contingency with the appropriate number of personnel and amount of equipment required to effectively perform the mission. To enhance the MWSS for deployment and employment and to provide the ACE commander with the greatest flexibility in employment options, the MWSS organizes for deployment using a system of capability packages. By using these capability packages, the MWSS commander can tailor equipment and personnel densities of the deploying unit to fit the assigned mission.

Generally, an entire MWSS should deploy to provide appropriate AGS to support one main air base. As an element of the MAW or ACE and not the FSSG or CSSE, the MWSS possesses no deployable stand-alone CSS capabilities. An MWSS’s AGS capabilities are interdependent (i.e., EAF requires drafting and survey as well as heavy equipment support; EOD requires MT support and directly supports ARFF). Therefore, MWSS task organization is driven more by AGS requirements to support an airfield or FOB than by the size of a supported ACE. Each capability package represents an initial core capability that can be modified to respond to specific circumstances.
Basic Capability Package
The basic capability package is comprised of those items of equipment and associated personnel required to achieve initial operational capability at a selected main base or air facility FOB.

Full Capability Package
The full capability package is comprised of equipment and personnel assets not already assigned to another capability package but required to achieve full operational capability at a main base or air facility FOB.

Site/Point Package
The site/point package is comprised of the minimal quantities of personnel and equipment required to operate an air site or air point FOB.

Expeditionary Airfield Package
The expeditionary airfield package is comprised of EAF components used to augment or enhance airfield capabilities.

Logistical Preparation
After identifying mission, tasks, T/O, T/E, requirements, and concept of employment, the MWSS must report lift and movement requirements to the ACE. The MWSS’s lift requirements are based on its personnel, equipment, and concept of deployment. The MWSS reports its requirements to the ACE using the data link known as MAGTF Deployment Support System II (MDSS II). By using predetermined capability packages, the MWSS can speed up this reporting process.

The MDSS II program is a part of a larger operational and logistic planning system managed by the MAGTF. Operational planning, deployment, and execution of MAGTF operations are supported by a series of coordinated, mutually supporting automated systems known as the MAGTF Logistics Automated Information System (MAGTF II/LOG AIS).
To understand how the movement of the ACE is scheduled, coordinated, and controlled, an understanding of this series of automated systems and their purposes is necessary. Refer to MCWP 4-1, *Logistics Operations*, for further description of the following planning systems.

MAGTF II
An automated operational planning and deployment execution system, the MAGTF II allows planners to select and tailor force structures and estimate sustainment and lift requirements for plan flexibility. MAGTF II also provides the interface between the MAGTF II/LOG AIS series of systems and the Joint Operation Planning and Execution System (JOPES). This interface allows for transmission of time-phased force and deployment data (TPFDD) to JOPES.

MDSS II
A user level system, the MDSS II is used by MAGTF elements to build and maintain a data base that contains force and equipment data reflecting the deployment configuration of the MAGTF. The data is uploaded to MAGTF II where it becomes part of the TPFDD provided to JOPES.

Transportation Coordinator’s Automated Information for Movement System (TC-AIMS)
The TC-AIMS provides the capability to plan and execute movement from point of origin to air and/or sea point of entry (POE), and from the point of debarkation (POD) to final destination. This system updates MDSS II, MAGTF II, and the defense transportation system with movement requirements and status. TC-AIMS and MAGTF II provide in-transit visibility to JOPES.

Computer-Aided Embarkation Management System (CAEMS)
Used to produce shipload plans and associated reports, the CAEMS provides the capability to reorganize ship and cargo characteristics, conduct cargo on-load and off-load flow path analysis, allocate cargo to stowage spaces, and ensure stowage compatibility. CAEMS updates MDSS II.
Computer-Assisted Load Manifest (CALM)
CALM is used to produce AMC-approved aircraft load plans and reports. It is capable of updating MDSS II, MAGTF II, and JOPES with actual aircraft load plans.

DEPLOYMENT

The ACE deployment is executed by forming the unit into movement groups according to speed and characteristics of the lift available and the time the forces are required in the operational objective area. Although movement echelons and methods are situation dependent (i.e., maritime pre-positioning force [MPF], amphibious, air-landed), the ACE and MWSS may deploy its elements using one or more of these methods. To move ACE logistic support to the objective area, both air and sealift will be required. ACE elements may be organized and moved in fly-in echelon (FIE), follow-on echelon (FOE), aviation logistics support ship (TAVB), and MPS.

Fly-In Echelon

FIE assets arrive by air transportation to support deployment to the theater of operation. Offload preparation party (OPP), SLRP, advance party, main body, and flight ferry (F/F) may use FIE deployment.

Offload Preparation Party

The OPP is used exclusively in MPF operations. The OPP consists of equipment operators and maintenance and embarkation personnel who embark aboard MPF ships in transit to the amphibious objective area and prepare equipment for off-load. The MWSS provides cooks, mechanics, and heavy equipment, utility, and MT operators to support OPP operations.
Survey, Liaison, and Reconnaissance Party
Primarily used in MPF operations, the SLRP consists of personnel from MAGTF elements. The mission of the SLRP is to—

- Assess areas with potential to support the arrival and assembly phase.
- Evaluate HN support capabilities.
- Determine engineering requirements.

The SLRP precedes MAGTF deployment and provides vital information to operational and logistic planners. The MWSS normally supplies an engineer officer, EAF officer, MP officer, and a communications operator to support SLRP activities. The actual makeup of the SLRP is determined by MAGTF and ACE requirements. The SLRP uses the site survey checklist in appendix E to provide the ACE with information concerning airfield facilities and equipment requirements.

Advance Party
The advance party is a task-organized element that will provide logistical capability for off-load, arrival, and assembly operations. When the advance party arrives in the arrival and assembly area, it will absorb the OPP and SLRP. The MWSS should strive to deploy a robust AGS capability within the advance party to prepare for and receive the ACE’s equipment.

Main Body
The main body consists of the remaining MAGTF forces less the ACE personnel involved in F/F. The remainder of the MWSS, not deployed with the advance party, and the preponderance of the ACE will normally arrive with the main body. Rotary-wing aircraft not capable of self-deployment will be loaded aboard appropriate transport aircraft and flown in the operating area with the main body.
Flight Ferry
The F/F will consist of fixed- and rotary-wing aircraft capable of self-deployment. It will involve inflight refueling, en route maintenance and supply support, and coordination of en route support bases.

Follow-on Echelon
FOE will consist of personnel and equipment not planned for deployment or required for FIE but identified later as being required.

Aviation Logistics Support Ship
The TAVB will provide dedicated sealift for the movement of the MALS IMA and other aviation support assets. The IMA may operate aboard the TAVB, or it may be phased ashore in the objective area.

Maritime Prepositioning Ships
In an MPF operation, the MPS delivers the preponderance of MWSS equipment, especially the larger engineer, MT, EAF, ARFF, and fuel assets. Use of the MPS to fill T/E requirements drastically reduces the ACE airlift and sealift requirements.

OPERATIONS
The MWSS provides the 14 functions of AGS to the ACE. To support the ACE, the MWSS employment, organization, and operations will depend largely on the following:

- Planned operating site for the ACE.
- Size of the ACE.
- Availability and capability of existing airfields within the area of responsibility.
While a single MWSS can support more than one location, the desired level of support and the distance between sites can directly influence the level of AGS provided. Primarily, the number of airfields or FOBs requiring support affects MWSS employment in MAGTF operations. Operation of an airfield, whether for a composite squadron or an air wing, requires ARFF, RRR, weather services, engineer support, fuel support, and other air base and ground services. These core requirements are relatively consistent and are planned for accordingly within the FIE. As support requirements increase because of expanding operational tempo and heavier airfield service demands, FOE components will augment initial MWSS assets with the appropriate support.

When preparing for operations, the MWSS should use all available information assets. The threat and HN logistic capabilities information drastically affects the MWSS’s ability to provide the 14 functions of AGS to the ACE. When developing the AGS concept, planners and executors should pay close attention to the considerations and requirements listed in previous chapters.

The MWSS needs a close working relationship with the ACE staff to execute its AGS mission. The support requirements and operations of the ACE always drive the operations of the MWSS. The ACE S-3 will provide information on sortie rates and desired airfield operational requirements. The ACE will collect, prioritize, and deconflict ACE logistical requirements for the ACE commander and provide vital information to assist AGS planners with—

- Personnel and aircraft.
- Billeting.
Messing.

Electrical power.

Radio and telephone.

Other air base logistical requirements.

RECONSTITUTION AND REDEPLOYMENT

The logistical support capabilities resident within the MWSS play a large role in the preparation, movement, reconstitution, and redeployment of the ACE. While the ACE S-4 develops the reconstitution and redeployment plan for the ACE, the MWSS provides the majority of the equipment and personnel to execute the plan. Reconstitution and redeployment operations are managed and supervised from the AGSOC. The MWSS redeploys in the reverse order it arrived in the operating area. The MWSS is usually one of the first ACE elements into theater and one of the last to leave.