NAVY TRAINING SYSTEM PLAN
FOR THE
SHARED RECONNAISSANCE POD
N78-NTSP-A-50-0121/I
DECEMBER 2001
EXECUTIVE SUMMARY

This Initial Navy Training System Plan was developed to identify the life cycle manpower, personnel, and training requirements associated with the Shared Reconnaissance Pod (SHARP). The SHARP system will replace the existing Tactical Air Reconnaissance Pod System currently used on the F-14 aircraft. The F-14 will begin phase-out in Fiscal Year 2003 as the role of the Navy’s tactical reconnaissance aircraft transitions to the F/A-18F Super Hornet. The SHARP system will employ an organic, all-weather, both day and night, manned, tactical air reconnaissance capability providing continuous and immediate intelligence support to the Battle Group Commander in the prosecution of independent, joint, or combined operations, as well as to provide intelligence data for the security of those forces under his/her command.

The SHARP program is an Acquisition Category III program and is currently in the System Development and Demonstration phase of the Defense Acquisition System, approaching Milestone C. Developmental Test is in its early stages and is being conducted at the Naval Air Warfare Center, Aircraft Division, Patuxent River, Maryland.

The SHARP components are of a Non-Developmental design consisting of modified Commercial and Non-Developmental Item equipment provided by the Raytheon Corporation and Recon/Optical Incorporated.

Navy F/A-18F Combat Capable Weapons Sensor Officer personnel with Navy Officer Billet Classification (NOBC) 1321 will operate and monitor the reconnaissance data collection onboard the aircraft.

Maintenance of the SHARP system will be performed at three levels: organizational, intermediate, and depot. AT and PH personnel with Navy Enlisted Classification (NEC) 8841 or 8341 will perform organizational level maintenance. A new NEC, 66XX, SHARP Intermediate Maintenance Technician, will be assigned to intermediate level AT personnel, who will perform intermediate level maintenance. Civilian personnel at a contractor facility will perform depot level maintenance.

SHARP anticipates making maximum use of the existing F-14 TARPS infrastructure and billet structure to provide the SHARP capability to the F/A-18F. An analysis of organizational manpower requirements was performed by AIR 3.4.1. Results indicate that manpower requirements are less than those required for maintenance of the predecessor system, the F-14 TARPS.

Training for aircrew and organizational level maintenance personnel will be modified to reflect the SHARP integration. Follow-on training for intermediate level maintenance Aviation Electronics Technician (AT) personnel will be accomplished by developing a new SHARP maintenance training track, C-XXX-XXXX, SHARP Intermediate Maintenance Technician.
SHARE RECONNAISSANCE POD PROGRAM

Pipeline. Training for Photographer’s Mate (PH) and Intelligence Specialist (IS) reconnaissance imaging and interpretation personnel will be unaffected by the SHARP integration.
TABLE OF CONTENTS

<table>
<thead>
<tr>
<th>Executive Summary</th>
<th>List of Acronyms</th>
<th>Preface</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>i</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>iii</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>v</td>
</tr>
</tbody>
</table>

PART I - TECHNICAL PROGRAM DATA

A. Nomenclature-Title-Program ... I-1
B. Security Classification ... I-1
C. Manpower, Personnel, and Training Principals I-1
D. System Description .. I-1
E. Developmental Test and Operational Test .. I-2
F. Aircraft and/or Equipment/System/Subsystem Replaced I-2
G. Description of New Development ... I-3
H. Concepts .. I-4
 1. Operational ... I-4
 2. Maintenance .. I-4
 3. Manning ... I-5
 4. Training .. I-7
I. Onboard (In-Service) Training ... I-26
J. Logistics Support ... I-27
K. Schedules .. I-28
L. Government-Furnished Equipment and Contractor-Furnished Equipment Training Requirements .. I-29
M. Related NTSPs and Other Applicable Documents I-30

APPENDIX A - POINTS OF CONTACT ... A-1
SHARED RECONNAISSANCE POD PROGRAM

LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>AIMD</td>
<td>Aircraft Intermediate Maintenance Department</td>
</tr>
<tr>
<td>AMTCS</td>
<td>Aviation Maintenance Training Continuum System</td>
</tr>
<tr>
<td>AO</td>
<td>Aviation Ordnanceman</td>
</tr>
<tr>
<td>AT</td>
<td>Aviation Electronics Technician</td>
</tr>
<tr>
<td>ATARS</td>
<td>Advanced Tactical Airborne Reconnaissance System</td>
</tr>
<tr>
<td>BIT</td>
<td>Built-In Test</td>
</tr>
<tr>
<td>CANDI</td>
<td>Commercial And Non-Developmental Item</td>
</tr>
<tr>
<td>CAU</td>
<td>Cold Air Unit</td>
</tr>
<tr>
<td>CBT</td>
<td>Computer-Based Training</td>
</tr>
<tr>
<td>CIN</td>
<td>Course Identification Number</td>
</tr>
<tr>
<td>CNO</td>
<td>Chief of Naval Operations</td>
</tr>
<tr>
<td>CVIC</td>
<td>Aircraft Carrier Intelligence Center</td>
</tr>
<tr>
<td>DT</td>
<td>Developmental Test</td>
</tr>
<tr>
<td>ECS</td>
<td>Environmental Control System</td>
</tr>
<tr>
<td>EOT</td>
<td>Electro-Optical Tester</td>
</tr>
<tr>
<td>FMS</td>
<td>Foreign Military Sales</td>
</tr>
<tr>
<td>FY</td>
<td>Fiscal Year</td>
</tr>
<tr>
<td>IS</td>
<td>Intelligence Specialist</td>
</tr>
<tr>
<td>JSIPS</td>
<td>Joint Service Imagery Processing System</td>
</tr>
<tr>
<td>LP</td>
<td>Low Pressure</td>
</tr>
<tr>
<td>MTIP</td>
<td>Maintenance Training Improvement Program</td>
</tr>
<tr>
<td>MTS</td>
<td>Maintenance Trainer Set</td>
</tr>
<tr>
<td>MTU</td>
<td>Maintenance Training Unit</td>
</tr>
<tr>
<td>NA</td>
<td>Not Applicable</td>
</tr>
<tr>
<td>NAF</td>
<td>Naval Aviation Facility</td>
</tr>
<tr>
<td>NAMTRAU</td>
<td>Naval Air Maintenance Training Unit</td>
</tr>
<tr>
<td>NAS</td>
<td>Naval Air Station</td>
</tr>
<tr>
<td>NATOPS</td>
<td>Naval Aviation Training and Operating Procedures Standardization</td>
</tr>
</tbody>
</table>
SHARED RECONNAISSANCE POD PROGRAM

LIST OF ACRONYMS

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAVAIRSYSCOM</td>
<td>Naval Air Systems Command</td>
</tr>
<tr>
<td>NAWCAD</td>
<td>Naval Air Warfare Center, Aircraft Division</td>
</tr>
<tr>
<td>NEC</td>
<td>Navy Enlisted Classification</td>
</tr>
<tr>
<td>NTSP</td>
<td>Navy Training System Plan</td>
</tr>
<tr>
<td>OEM</td>
<td>Original Equipment Manufacturer</td>
</tr>
<tr>
<td>OPO</td>
<td>OPNAV Principal Official</td>
</tr>
<tr>
<td>OT</td>
<td>Operational Test</td>
</tr>
<tr>
<td>PCMCIA</td>
<td>Personal Computer Memory Card International Association</td>
</tr>
<tr>
<td>PGSE</td>
<td>Peculiar Ground Support Equipment</td>
</tr>
<tr>
<td>PH</td>
<td>Photographer’s Mate</td>
</tr>
<tr>
<td>PMA</td>
<td>Program Manager, Air</td>
</tr>
<tr>
<td>PTT</td>
<td>Part Task Trainer</td>
</tr>
<tr>
<td>RFI</td>
<td>Ready For Issue</td>
</tr>
<tr>
<td>RFT</td>
<td>Ready For Training</td>
</tr>
<tr>
<td>SEAOPDET</td>
<td>Sea Operational Detachment</td>
</tr>
<tr>
<td>SERE</td>
<td>Survival, Evasion, Resistance, and Escape</td>
</tr>
<tr>
<td>SHARP</td>
<td>Shared Reconnaissance Pod</td>
</tr>
<tr>
<td>SMS</td>
<td>Stores Management System</td>
</tr>
<tr>
<td>TARPS</td>
<td>Tactical Air Reconnaissance Pod System</td>
</tr>
<tr>
<td>TBD</td>
<td>To Be Determined</td>
</tr>
<tr>
<td>TD</td>
<td>Training Device</td>
</tr>
<tr>
<td>TOFT</td>
<td>Tactical Operational Flight Trainer</td>
</tr>
<tr>
<td>TTE</td>
<td>Technical Training Equipment</td>
</tr>
<tr>
<td>VF</td>
<td>Fighter Squadron</td>
</tr>
<tr>
<td>VFA</td>
<td>Strike Fighter Squadron</td>
</tr>
<tr>
<td>WRA</td>
<td>Weapon Replaceable Assembly</td>
</tr>
<tr>
<td>WSO</td>
<td>Weapons Sensor Officer</td>
</tr>
<tr>
<td>WTT</td>
<td>Weapons Tactics Trainer</td>
</tr>
</tbody>
</table>

N78-NTSP-A-50-0121/I
December 2001
SHARED RECONNAISSANCE POD PROGRAM

PREFACE

This Initial Navy Training System Plan (NTSP) is an early look at the Shared Reconnaissance Pod (SHARP) program. This document is the first iteration of the Initial NTSP for the SHARP program, and it explores the various employment and support alternatives currently under consideration. This NTSP is a product of the Training Planning Process Methodology, as outlined in OPNAV publication P-751-3-9-97.
PART I - TECHNICAL PROGRAM DATA

A. NOMENCLATURE-TITLE-PROGRAM

1. Nomenclature-Title-Acronym. Shared Reconnaissance Pod (SHARP) Program

2. Program Element. 0305207N

B. SECURITY CLASSIFICATION

1. System Characteristics Unclassified
2. Capabilities Unclassified
3. Functions Unclassified

C. MANPOWER, PERSONNEL, AND TRAINING PRINCIPALS

OPNAV Principal Official (OPO) Program Sponsor... CNO (N78)

OPO Resource Sponsor .. CNO (N78)

Developing Agency... NAVAIRSYSCOM (PMA265)

Training Agency ... CINCLANTFLT (N72)
CINCPACFLT (N70)
CNET (ETE32)

Training Support Agency .. NAVAIRSYSCOM (PMA205)

Manpower and Personnel Mission Sponsor .. CNO (N12)
NAVPERSCOM (PERS-4, PERS-404)

Director of Naval Training ... CNO (N795)

D. SYSTEM DESCRIPTION

1. Operational Uses. The current tactical reconnaissance aircraft is the F-14 configured with the Tactical Air Reconnaissance Pod System (TARPS), equipped with film sensors designed to operate both day and night, in clear weather conditions only. The SHARP system will employ an organic, all-weather, both day and night, manned, tactical air reconnaissance capability, providing continuous and immediate intelligence support to the Battle Group Commander in the
prosecution of independent, joint, or combined operations, as well as to provide intelligence data for the security of those forces under his/her command. SHARP will support the following operational tasks:

- Precision Strike
- Maritime Surveillance
- Target Acquisition and Reporting
- Pre-Strike Reconnaissance Targeting
- Suppression of Enemy Air Defense
- Battle Damage Assessment
- Order-of-Battle Maintenance
- Targeting Monitoring
- Surveillance of Special Areas of Lines of Communication
- Indications and Warning
- Drug Interdiction
- Combat Search and Rescue
- Map Supplementing
- Treat Verification
- Humanitarian (Disaster Relief).

2. Foreign Military Sales. No Foreign Military Sales (FMS) are currently planned for the SHARP program. Multi-platform application is being considered. For further information regarding FMS or other platform applications, contact the Developing Agency, Naval Air Systems Command (NAVAIRSYSCOM) Program Manager, Air (PMA) 265.

E. DEVELOPMENTAL TEST AND OPERATIONAL TEST. Developmental Test (DT) is in its early stages and is being conducted at the Naval Air Warfare Center, Aircraft Division (NAWCAD) Patuxent River, Maryland. Successful tests have been completed with an empty prototype pod. Most of the Weapon Replaceable Assemblies (WRAs) used in SHARP are Commercial And Non-Developmental Items (CANDI), requiring no DT or Operational Test (OT) on the hardware itself. Testing is required for installation and integration onto the aircraft. An operational assessment is scheduled to be conducted by Air Test and Evaluation Squadron Nine (VX-9) at China Lake, California, beginning in July 2002. The Technical Evaluation is scheduled to be conducted at NAWCAD Patuxent River beginning in January 2003.

F. AIRCRAFT AND/OR EQUIPMENT/SYSTEM/SUBSYSTEM REPLACED. The SHARP system will replace the existing TARPS currently used on the F-14 Aircraft. The F-14 will begin phase-out in Fiscal Year (FY) 03 as the role of the Navy’s tactical reconnaissance aircraft transitions to the F/A-18F Super Hornet. SHARP will have no impact on Marine Corps use of the Advanced Tactical Airborne Reconnaissance System (ATARS) on F/A-18C/D aircraft.
G. DESCRIPTION OF NEW DEVELOPMENT

1. Functional Description. The SHARP system, depending on the operational requirements of the sensor suite(s) selected, will be capable of optimum performance to 40,000 feet and above altitude aboard the carriage aircraft, under clear to hazy weather conditions, day or night. SHARP will utilize electro-optical, infrared, and radar sensors to provide digital imaging in a hostile environment. It will, via data link, present information and imagery obtained on tactical targets to a Joint Services Imagery Processing System (JSIPS) station afloat or ashore to allow for real-time reconnaissance data interpretation. Communication between the SHARP pod and the F/A-18F Super Hornet is via the 1760 Multiplex Bus.

2. Physical Description. The SHARP pod design is based on the shape and size of the 330-gallon auxiliary fuel tank. The SHARP pod is mounted to the SUU-73 pylon on the aircraft center line on Weapon Station 6 using standard adapter equipment to interface with the BRU-32 bomb rack mounted to the large, raised, dorsal strong-back that extends along the upper third of the pod.

SHARP is composed of seven primary subsystems:

° Data Link
° Sensor
° Environmental Control System (ECS)
° Power Distribution
° Data Storage
° Navigation
° Personal Computer Memory Card International Association (PCMCIA) Interface

The ECS subsystem, separate from the F/A-18F ECS system, circulates liquid coolant throughout the pod to regulate internal temperature as well as maintaining the pressure and humidity within the pod. Ram air flow (in-flight) or an alternate (ground) source of low pressure air must be applied to the ECS compressor section to drive the primary cold air unit turbine and thermally stabilize the sensor optics.

The following dimensions apply to the physical characteristics of the SHARP pod:

Length 188 inches
Width............ 29 inches
Weight 2100 pounds

3. New Development Introduction. The SHARP is being procured through new production.

4. Significant Interfaces. The SHARP ECS requires a stable air source to properly operate and cool the pod while on deck afloat and ashore. Shipboard modification requirements have been evaluated and are determined to be a 50-foot hose connected between a deck edge or
hanger deck low pressure (LP) air standpipe and the SHARP Secondary Cold Air Unit (CAU) snap fitting on the pod. LP air drives the Secondary CAU, which powers the Primary ECS Turbine to cool the pod. Shore-based solutions under evaluation include: hanger supplied LP service air, procurement of a new portable compressor, using mission ingress time to cool the pod, and modifying the ECS. Built-In Test (BIT) checking the pod off-aircraft would also negate the requirement for applying cooling to the aircraft.

SHARP will provide digitally formatted data via an internal data link to a ground or ship based JSIPS station for processing, exploitation, and report generation and dissemination. Upon return from the mission, the data will be downloaded from the airborne recorders and transported to the Squadron Display Stations for playback and evaluation of reconnaissance collection, battle damage assessment, and future mission planning.

5. New Features, Configurations, or Material. The SHARP does not feature a technological breakthrough but utilizes state-of-the-art hardware and technology.

H. CONCEPTS

1. Operational Concept. The SHARP imagery is displayed on the center display of the aft cockpit Multipurpose Color Display of the F/A-18F Super Hornet, and is operated and monitored by the Weapons Sensor Officer (WSO). SHARP imagery is currently planned to be a series of imagery frames displayed for a duration of two to five seconds. In addition to the imagery, the sensor status and BIT information is also displayed within the video. This provides full diagnostic capability for SHARP without having a complex interface with the aircraft mission computer.

2. Maintenance Concept. SHARP is planned to employ the traditional three level maintenance approach.

a. Organizational. Organizational level maintenance of SHARP is limited to servicing and testing of the pod. Servicing consists of routine uploading and downloading of the pod, thermally conditioning the pod when required, checking and replacing desiccant cartridges, and corrosion checks. Fault detection is accomplished by an Initiated BIT using the aircraft or the Electro-Optical Pod Tester, inspection of proper operation and condition of the revolving sensor window, the reading and extraction of maintenance PCMCIA cards that contain BIT and Maintenance History Data, and the installation (preflight) and removal (postflight) of the solid state memory brick.

(1) Preventive Maintenance. Preventive maintenance performed at the organizational level primarily consists of cleaning and corrosion control. Preventive maintenance will be performed in accordance with applicable F/A-18F Maintenance Requirements Cards and NAVAIR 01-1A-509.

(2) Corrective Maintenance. Corrective maintenance at the organizational level is limited to checking and replacing desiccant cartridges. BIT failure requires
the removal and replacement of the pod. Removed pods will be inducted into the Intermediate Maintenance Activity for repair.

 b. Intermediate. Fault isolation of the pod WRAs and components will be determined by detailed complex diagnostics of the pod using the Electro-Optical Tester (EOT). Repair and maintenance of the pod consists of the removal and replacement of faulty WRAs, configuring the pod with High or Medium Altitude Sensors as required, and servicing the Polyalphaolephin (PAO) liquid cooling loop. Once faults are isolated and faulty components are replaced, the pod will be tested and verified Ready For Issue (RFI) using the EOT.

 c. Depot. The Original Equipment Manufacturer (OEM) will perform all maintenance and repairs beyond the capability of the intermediate maintenance level.

 d. Interim Maintenance. The Raytheon Technical Systems Company will provide interim intermediate maintenance support. Support will be limited to the removal and replacement of the faulty WRAs to restore the system to operational readiness as quickly as possible. Intermediate level maintenance support will be performed by a Raytheon Technical Representative and involves fault verification of failed WRAs utilizing the EOT. The OEM will provide interim organizational and depot level support during DT and OT.

 The Material Support Date and Navy Support Date are undetermined as of the date of this NTSP. Replacement parts required to support the interim maintenance of SHARP will be locally stored and managed by the Raytheon Technical Representative.

 e. Life Cycle Maintenance Plan. To Be Determined (TBD)

3. Manning Concept. SHARP anticipates making maximum use of the existing F-14 TARPS infrastructure and billet structure to provide the capability of SHARP to the F/A-18F. A new NEC, 66XX, **SHARP Intermediate Maintenance Technician**, will be required for personnel who perform intermediate level maintenance. An analysis of organizational manpower requirements was performed by AIR 3.4.1. Results indicate that manpower requirements are less than those required for maintenance of the predecessor system, the F-14 TARPS. Manpower requirements identified in subsequent paragraphs are based on proposed requirements provided by PMA265, validated by this manpower analysis.

 a. Estimated Maintenance Man-Hours per Flight Hour. The SHARP technical parameter threshold values derived from the SHARP Operational Requirements Document for system reliability, availability, and repair times are as follows:

<table>
<thead>
<tr>
<th>PARAMETER</th>
<th>THRESHOLD</th>
<th>OBJECTIVE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operational Availability</td>
<td>70%</td>
<td>85%</td>
</tr>
<tr>
<td>Mean Flight Hours Between Operational Mission Failures</td>
<td>20.0 hours</td>
<td>60.0 hours</td>
</tr>
</tbody>
</table>
b. Proposed Utilization. SHARP will be required to operate day and night, and in inclement weather conditions throughout mission duration, or as selected by the operator.

c. Recommended Qualitative and Quantitative Manpower Requirements

(1) Aircrew. There are no anticipated changes in Aircrew manpower requirements. Aircrew requirements consist of the Pilot and the WSO.

(2) Maintenance

(a) Organizational Level. The additional organizational level workload generated by SHARP is considered to be minimal consisting of upload and download, system checkout, and checking and replacing desiccant cartridges. These functions are currently being performed in the F-14 community on the TARPS pods by Aviation Electronics Technician (AT) and Photographer’s Mate (PH) personnel in Work Center 240. Based on an assessment of the total workload of Work Center 240, per information provided by PMA265, initial estimates indicate that to support SHARP organizational maintenance functions, each F/A-18F squadron will require:

<table>
<thead>
<tr>
<th>BILLET</th>
<th>NOBC/NEC</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Photo Officer</td>
<td>6470</td>
<td>1</td>
</tr>
<tr>
<td>(directed billet)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>PH2</td>
<td>8341</td>
<td>1</td>
</tr>
<tr>
<td>PH3</td>
<td>8841</td>
<td>1</td>
</tr>
<tr>
<td>PHAN</td>
<td>8841</td>
<td>2</td>
</tr>
</tbody>
</table>
Additionally, one Aviation Ordnanceman (AO) with NEC 8341 or 8841 (billet currently existing) will be required as a safety supervisor during the upload and download of the pod and to arm and de-arm the BRU-32 bomb rack.

(b) Intermediate Level. Intermediate level maintenance will transfer to Sea Operational Detachment (SEAOPDET) personnel aboard ship and Aircraft Intermediate Maintenance Department (AIMD) personnel ashore after the interim intermediate maintenance support period. Because the intermediate level SHARP repair skill must be available to support repairs of equipment failures, the requirement will create the need for additional personnel in the SEAOPDET. It is estimated that each F/A-18F SEAOPDET will require two AT2, NEC 66XX, and one ATAN, NEC 0000, to support SHARP intermediate level maintenance functions.

(c) Depot. OEM personnel will perform all maintenance beyond the capability of the intermediate level.

(3) Reconnaissance Imaging and Interpretation. The additional reconnaissance imaging and interpretation level workload generated by SHARP is considered to be minimal. These functions are currently being performed by Photographer’s Mate (PH) and Intelligence Specialist (IS) personnel in the Aircraft Carrier Intelligence Center (CVIC) afloat and the Fleet Intelligence Center (FIC) ashore. To support SHARP imagery functions, it is estimated that each CVIC and FIC operating JSIPS will require:

<table>
<thead>
<tr>
<th>BILLET</th>
<th>NOBC/NEC</th>
<th>QUANTITY</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intelligence Officer (directed billet)</td>
<td>6470</td>
<td>1</td>
</tr>
<tr>
<td>PH3</td>
<td>8193</td>
<td>1</td>
</tr>
<tr>
<td>PHAN</td>
<td>0000</td>
<td>1</td>
</tr>
<tr>
<td>IS2</td>
<td>3925</td>
<td>1</td>
</tr>
<tr>
<td>IS2</td>
<td>3926</td>
<td>1</td>
</tr>
</tbody>
</table>

4. Training Concept. To ensure a well-defined training program is available for integrating the SHARP system into the F/A-18F community, training for aircrew and the training
curriculum for organizational level maintenance personnel will be modified to reflect the SHARP integration. Follow-on SHARP intermediate maintenance training for AT personnel will be accomplished by developing a new SHARP maintenance training track, C-XXX-XXXX, SHARP Intermediate Maintenance Technician Pipeline. Training for PH and IS reconnaissance imaging and interpretation personnel will be unaffected by the SHARP integration.

The established training concept for most aviation maintenance training divides “A” School courses into two or more segments called Core and Strand. Many organizational level “C” School courses are also divided into separate Initial and Career training courses. “A” School Core courses include general knowledge and skills training for the particular rating, while “A” School Strand courses focus on the more specialized training requirements for that rating and a specific aircraft or equipment, based on the student’s fleet activity destination. Strand training immediately follows Core training and is part of the “A” School. Upon completion of Core and Strand “A” Schools, graduates going to organizational level activities attend the appropriate Initial “C” School for additional specific training. Initial “C” School training is intended for students in paygrades E-4 and below. Career “C” School training is provided to organizational level personnel, E-5 and above, to enhance skills and knowledge within their field. “A” School graduates going to intermediate level activities attend the appropriate intermediate level “C” School. Intermediate level “C” Schools are not separated into Initial and Career courses.

a. Initial Training. The Boeing Company and the Raytheon Technical Systems Company will provide factory training to aircrew personnel utilizing Grey Book data extracted from DT and OT. Boeing will provide organizational maintenance factory training to AT and AO personnel. Aircrew and organizational maintenance training is expected to be accomplished in late FY03. Raytheon will provide intermediate maintenance training to AT personnel, and provide a Technical Representative to augment SEAOPDET personnel in off-aircraft maintenance. Intermediate maintenance training is expected to be accomplished in early FY04. Initial training curriculum as applied to SHARP has not been developed as of the date of this Initial NTSP.

Title F/A-18F SHARP Aircrew
Description This course provides SHARP initial training to cadre and instructor F/A-18F Pilot and WSO personnel.
Location Contractor facilities
Length TBD
RFT date TBD
TTE/TD TBD
Prerequisites Qualified F/A-18F Pilot or WSO
F/A-18F SHARP Organizational Maintenance

Description

This course provides SHARP initial organizational level maintenance training to instructor and cadre maintenance personnel.

Location

Contractor facilities

Length

TBD

RFT date

TBD

TTE/TD

TBD

Prerequisites

° AO 8841
° AT 8841

SHARP Intermediate Maintenance

Description

This course provides SHARP initial first degree intermediate level maintenance training to instructor and cadre maintenance personnel.

Location

Contractor facilities

Length

TBD

RFT date

TBD

TTE/TD

TBD

Prerequisites

° AT 66XX

b. Follow-on Training

Boeing has completed Difference Training for the F/A-18E/F Initial Maintenance courses at Maintenance Training Unit (MTU) 1038 Naval Air Maintenance Training Unit (NAMTRAU) Lemoore, California. Curriculum validation of the follow-on maintenance courses was completed in January 2001 and the courses are currently Ready For Training (RFT). There are no F/A-18E/F maintenance courses planned for PH personnel. The following are the F/A-18E/F courses applicable to SHARP.
Title F/A-18E/F Fleet Replacement Pilot Category I
CIN E-2A-061X
Model Manager ... VFA-122
Description This pipeline provides first tour F/A-18E/F Pilot training, including:
° Flight Training
° Crew Tactics
° Crew Safety and Egression
° Communication and Navigation
° Armament Systems
Upon completion the student will be able to perform the duties of an F/A-18E/F Pilot in a squadron environment.
Location VFA-122, Naval Air Station (NAS) Lemoore
Length 257 days (estimated)
RFT date Currently Available
Skill identifier....... NOBC 1311
TTE/TD................. ° TD-01 Weapons Tactics Trainer (WTT)
° TD-02 Part Task Trainer (PTT)
° TD-03 Tactical Operational Flight Trainer (TOFT)
Prerequisite......... ° Designated Service Group I Naval Aviator
° Appropriate Survival, Evasion, Resistance, and Escape (SERE) Training
° Secret Clearance

Title F/A-18E/F Fleet Replacement Pilot Category II
CIN E-2A-062X
Model Manager ... VFA-122
Description This pipeline provides second tour F/A-18E/F Pilot training, including:
° Flight Training
° Crew Tactics
° Crew Safety and Egression
° Communication and Navigation
° Armament Systems
Upon completion the student will be able to perform the duties of an F/A-18E/F Pilot in a squadron environment.
Location VFA-122, NAS Lemoore
Length 215 days (estimated)
RFT date Currently Available
Skill identifier NOBC 1311
TTE/TD TD-01 WTT
 TD-02 PTT
 TD-03 TOFT
Prerequisite Designated Service Group I Naval Aviator
 Appropriate SERE Training
 Secret Clearance

Title F/A-18E/F Fleet Replacement Pilot Category III
CIN E-2A-063X
Model Manager ... VFA-122
Description This pipeline provides advanced F/A-18E/F Pilot training, including:
 Flight Training
 Crew Tactics
 Crew Safety and Egression
 Communication and Navigation
 Armament Systems
 Upon completion the student will be able to perform the duties of an F/A-18E/F Pilot in a squadron environment.
Location VFA-122, NAS Lemoore
Length 169 days (estimated)
RFT date June 2002
Skill identifier NOBC 1311
TTE/TD TD-01 WTT
 TD-02 PTT
 TD-03 TOFT
Prerequisite Designated Service Group I Naval Aviator
 Appropriate SERE Training
 Secret Clearance
Title F/A-18E/F Fleet Replacement Pilot Category IV

CIN E-2A-064X

Model Manager ... VFA-122

Description This pipeline provides senior level F/A-18E/F Pilot training, including:
° Flight Training
° Crew Tactics
° Crew Safety and Egression
° Communication and Navigation
° Armament Systems

Upon completion the student will be able to perform the duties of an F/A-18E/F Pilot and could perform the duties of Naval Aviation Training and Operating Procedures Standardization (NATOPS) Instructor in a squadron environment.

Location VFA-122, NAS Lemoore

Length 36 days (estimated)

RFT date Currently Available

Skill identifier NOBC 1311

TTE/TD ° TD-01 WTT
° TD-02 PTT
° TD-03 TOFT

Prerequisite ° Designated Service Group I Naval Aviator
° Appropriate SERE Training
° Secret Clearance
Title F/A-18F Combat Capable Weapons Sensor Officer Training Category I
CIN E-2D-181X
Model Manager ... VFA-122
Description This pipeline provides initial training for the Category I WSO, including:
° Flight Training
° Crew Tactics
° Crew Safety and Egression
° Armament Control
° Communication and Navigation
Upon completion the student will be able to perform the duties of an F/A-18F WSO in a squadron environment.
Location VFA-122, NAS Lemoore
Length 229 days (estimated). The estimate is based on current the F/A-18 WSO course.
RFT date Currently Available
Skill identifier..... NOBC 1321
TTE/TD.............. ° TD-01 WTT
° TD-02 PTT
° TD-03 TOFT
Prerequisite........ ° Designated Service Group I Naval Aviator
° Appropriate SERE Training
° Secret Clearance
Title F/A-18F Combat Capable Weapons Sensor Officer Training Category II

CIN E-2D-182X

Model Manager ... VFA-122

Description This pipeline provides second tour training for the Category II WSO, including:
 ° Flight Training
 ° Crew Tactics
 ° Crew Safety and Egression
 ° Armament Control
 ° Communication and Navigation

Upon completion the student will be able to perform the duties of an F/A-18F WSO in a squadron environment.

Location VFA-122, NAS Lemoore

Length 215 days (estimate). The estimate is based on the current F/A-18 WSO course.

RFT date Currently Available

Skill identifier...... NOBC 1321

TTE/TD............... ° TD-01 WTT
 ° TD-02 PTT
 ° TD-03 TOFT

Prerequisite......... ° Designated Service Group I Naval Aviator
 ° Appropriate SERE Training
 ° Secret Clearance
Title F/A-18F Combat Capable Weapons Sensor Officer Training Category III

CIN E-2D-183X

Model Manager ... VFA-122

Description This pipeline provides advanced training for the Category III WSO, including:
° Flight Training
° Crew Tactics
° Crew Safety and Egression
° Armament Control
° Communication and Navigation

Upon completion the student will be able to perform the duties of an F/A-18F WSO in a squadron environment.

Location VFA-122, NAS Lemoore

Length 169 days (estimated). The estimate is based on the current F/A-18 WSO course.

RFT date June 2002

Skill identifier NOBC 1321

TTE/TD ° TD-01 WTT
° TD-02 PTT
° TD-03 TOFT

Prerequisite........ ° Designated Service Group I Naval Aviator
° Appropriate SERE Training
° Secret Clearance
Title F/A-18F Combat Capable Weapons Sensor Officer Training Category IV
CIN E-2D-184X
Model Manager ... VFA-122
Description This pipeline provides senior level training for the Category IV WSO, including:
° Flight Training
° Crew Tactics
° Crew Safety and Egression
° Armament Control
° Communication and Navigation
Upon completion the student will be able to perform the duties of an F/A-18F WSO and could perform the duties of NATOPS Instructor in a squadron environment.
Location VFA-122, NAS Lemoore
Length 36 days (estimated). The estimate is based on the current F/A-18 WSO course.
RFT date Currently Available
Skill identifier NOBC 1321
TTE/TD ° TD-01 WTT
° TD-02 PTT
° TD-03 TOFT
Prerequisite......... ° Designated Service Group I Naval Aviator
° Appropriate SERE Training
° Secret Clearance
Title F/A-18E/F Avionics Systems (Initial) Organizational Maintenance

CIN E-102-0623

Model Manager ... MTU 1038 NAMTRAU Lemoore

Description This track provides training to the first tour Aviation Electronics Technician, including:

° Fire Control Systems
° Communication and Navigation Systems
° Identification System
° Countermeasure System
° Test and Support Equipment
° Publications and Safety Procedures

Upon completion the student will be able to perform organizational maintenance on the F/A-18E/F under direct supervision.

Location MTU 1038 NAMTRAU Lemoore

Length 95 days

RFT date Currently Available

Skill identifier....... AT 8841 (E-1 through E-4)

TTE/TD................. ° TD-05 Avionics System Maintenance Trainer Set (MTS)
° F/A-18E/F Avionics Systems

Prerequisite........... ° C-100-2020, Avionics Common Core Class A1
° C-100-2018, Avionics Technician O-Level Class A1
Title F/A-18E/F Avionics Systems (Career) Organizational Maintenance

CIN E-102-0624

Model Manager MTU 1038 NAMTRAU Lemoore

Description This track provides the second tour Aviation Electronics Technician with advanced knowledge in theory, operation, testing, and troubleshooting, including:

° Fire Control Systems
° Communication and Navigation Systems
° Identification System
° Countermeasure System
° Test and Support Equipment
° Publications and Safety Procedures

Upon completion the student will be able to perform organizational maintenance on the F/A-18E/F Avionics Systems under limited supervision.

Location MTU 1038 NAMTRAU Lemoore

Length 32 days

RFT date Currently Available

Skill identifier AT 8341 (E-5 through E-7)

TTE/TD............... ° TD-05 Avionics System MTS
 ° F/A-18E/F Avionics Systems

Prerequisite......... ° C-100-2020, Avionics Common Core Class A1
 ° C-100-2018, Avionics Technician Organizational Level Class A1
 ° E-102-0623, F/A-18 E/F Avionics System (Initial) Organizational Maintenance
Title F/A-18E/F Armament Systems (Initial) Organizational Maintenance

CIN E-646-0642

Model Manager ... MTU 1038 NAMTRAU Lemoore

Description This track provides training to the first tour Aviation Ordnanceman, including:

° Stores Management System (SMS)
° Troubleshooting Procedures
° Weapon Control Systems
° Test and Support Equipment
° Publications and Safety Procedures

Upon completion the student will be able to perform organizational maintenance on the F/A-18E/F Armament Systems under direct supervision.

Location MTU 1038 NAMTRAU Lemoore

Length 30 days

RFT date Currently Available

Skill identifier....... AO 8841 (E-1 through E-4)

TTE/TD............... TD-04 Armament Systems Maintenance Trainer Set (MTS)

Prerequisite........ C-646-2012, Aviation Ordnanceman Airwing Strand Class A1
Title F/A-18E/F Armament Systems (Career) Organizational Maintenance

CIN E-646-0644

Model Manager ... MTU 1038 NAMTRAU Lemoore

Description This track provides the second tour Aviation Ordnanceman with advanced knowledge in theory, operation, testing, and troubleshooting, including:

° Troubleshooting Beyond BIT
° Use of Electrical Test Equipment
° SMS
° SMS Cautions and Advisories
° SMS Maintenance Codes
° Weapon Control System
° Publications and Safety Procedures

Upon completion the student will be able to perform organizational maintenance on the F/A-18E/F Armament Systems under limited supervision.

Location MTU 1038 NAMTRAU Lemoore

Length 11 days

RFT date Currently Available

Skill identifier....... AO 8341 (E-5 through E-7)

TTE/TD............... TD-04 Armament Systems MTS

Prerequisite.......... ° E-646-0642, F/A-18E/F Armament Systems (Initial)
° Organizational Maintenance
Title Advanced Electronic Imaging

CIN S-400-2040

Model Manager ... Department of Defense Information School

Description This course provides the Photographer’s Mate with advanced knowledge and skills necessary to perform advanced electronic imaging tasks and functions for the multimedia, including:

° Operation of Advanced Electronic Imaging Systems
° Acquisition, Enhancement, Design, Generation, Output, and Archival of Digital Images
° Theoretical and Working Knowledge of Imaging Systems
° Troubleshooting
° Networking Communications
° Emerging Technology

Upon completion the student will be able to perform as an Advanced Electronic Imaging Systems Specialist under limited supervision.

Location Navy Technical Training Center Detachment, Fort Meade, Maryland

Length 25 days

RFT date Currently Available

Skill identifier...... PH 8193 (E-3 through E-7)

TTE/TD.............. ° Macintosh G3
° Personal Computer

Prerequisite........ ° One year of digital imaging experience
° S-400-2011, Basic Still Photography; or
° S-570-0017, Intermediate Photo Journalism; or
° S-400-2038, Electronic Imaging
Title Digital Imagery Workstation Suite Afloat Operator
CIN J-243-2953
Model Manager ... Navy and Marine Corps Intelligence Training Center
(NMITC)
Description This course provides the Intelligence Specialist with basic
knowledge and skills necessary to support the creation of
photogrammetric products, including:
° Digital Scene Matching Area Correlation
° Target Definition
° Vertical Obstruction Data
° Vertical Update Points
° Terrain Profiles
Upon completion the student will be able to perform as a
Digital Imagery Workstation Suite Afloat Operator/Analyst
under limited supervision.
Location NMITC, Dam Neck, Virginia
Length 75 days
RFT date Currently Available
Skill identifier....... IS 3925 (E-5 through E-7)
TTE/TD............... Digital Imagery Workstation Suite
Prerequisite......... ° J-242-0100, Intelligence Specialist Phase I Class A1
 ° J-242-0993, Intelligence Specialist Imagery Interpretation
 Class C
 ° J-150-0987, Strike Warfare Applications Analyst
 ° Top Secret Clearance
Title Imagery Dissemination Manager Pipeline
CIN J-150-2973
Model Manager ... NMITC
Description This course provides the Intelligence Specialist with specialized knowledge and skills necessary to perform advanced digital imaging tasks and functions, including:
° Operation of the Precision Targeting Workstation/Strike Planning Archive
° Processing and Exploitation Tasks Using JSIPS
° Softcopy Imagery Dissemination
° Input, Viewing, and Manipulation Techniques of Digital Imagery

Upon completion the student will be able to perform as an imagery dissemination manager under limited supervision.

Location NMITC, Dam Neck, Virginia
Length 26 days
RFT date Currently Available
Skill identifier....... IS 3926 (E-4 through E-5)
TTE/TD ° National Input Segment/Dissemination Element
° Navy Tactical Input Segment
Prerequisite......... ° J-242-0100, Intelligence Specialist Class A1
° J-242-0993, Intelligence Specialist Imagery Interpretation Class C
° Top Secret Clearance
Title SHARP Intermediate Maintenance Technician
CIN C-XXX-XXXX
Model Manager ... TBD
Description This course will provide training to the Aviation Electronics Technician, including:
 ° Testing and Troubleshooting Procedures
 ° SHARP System Operation and Maintenance
 ° Radio Frequency Theory
 ° Environmental Control Systems
 ° Imaging in Electro-Optical and Infrared Spectrums
 ° Reconnaissance Theory
 ° Safety
Upon completion, the student will be able to perform as a SHARP Intermediate Maintenance Technician in a shop environment under limited supervision.

Location TBD
Length TBD
RFT date TBD
Skill identifier . . AT 66XX (E-3 through E-7)
TTE/TD
 ° EOT
 ° SHARP Pod
Prerequisite
 ° C-100-2020, Avionics Common Core Class A1
 ° C-100-2017, Avionics Technician Intermediate Level A1

c. Student Profiles

<table>
<thead>
<tr>
<th>SKILL IDENTIFIER</th>
<th>PREREQUISITE SKILL AND KNOWLEDGE REQUIREMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOBC 1311</td>
<td>° Q-2A-0007, T-45 Strike Flight Training</td>
</tr>
<tr>
<td></td>
<td>° Q-2A-0005, Intermediate Strike Flight Training</td>
</tr>
<tr>
<td></td>
<td>° Q-2A-0006, Advanced Strike Flight Training</td>
</tr>
<tr>
<td></td>
<td>° Appropriate SERE Training</td>
</tr>
<tr>
<td></td>
<td>° J-495-0413, Shipboard Aircraft Firefighting</td>
</tr>
<tr>
<td>SKILL IDENTIFIER</td>
<td>PREREQUISITE SKILL AND KNOWLEDGE REQUIREMENTS</td>
</tr>
<tr>
<td>-----------------</td>
<td>---</td>
</tr>
</tbody>
</table>
| NOBC 1321 | ▪ Designated Service Group I Naval Aviator
 ▪ Appropriate SERE Training
 ▪ Secret Clearance |
| AO 8341 | ▪ E-646-0642, F/A-18E/F Armament Systems (Initial) Organizational Maintenance |
| AO 8841 | ▪ C-646-2012, Aviation Ordnanceman Airwing Strand Class A1 |
| AT 8341 | ▪ C-100-2020, Avionics Common Core Class A1
 ▪ C-100-2018, Avionics Technician Organizational Level Class A1
 ▪ E-102-0623, F/A-18E/F Avionics System (Initial) Organizational Maintenance |
| AT 8841 | ▪ C-100-2020, Avionics Common Core Class A1
 ▪ C-100-2018, Avionics Technician Organizational Level Class A1 |
| AT XXXX | ▪ C-100-2020, Avionics Common Core Class A1
 ▪ C-100-2017, Avionics Technician Intermediate Level Class A1 |
| IS 3925 | ▪ J-242-0100, Intelligence Specialist Phase I Class A1
 ▪ J-242-0993, Intelligence Specialist Imagery Interpretation Class C
 ▪ J-150-0987, Strike Warfare Applications Analyst |
| IS 3926 | ▪ J-242-0100, Intelligence Specialist Phase I Class A1
 ▪ J-242-0993, Intelligence Specialist Imagery Interpretation Class C |
| PH 8193 | ▪ One year of digital imaging experience
 ▪ S-400-2011, Basic Still Photography; or
 ▪ S-570-0017, Intermediate Photo Journalism; or
 ▪ S-400-2038, Electronic Imaging |
| PH 8341 | ▪ S-400-2011, Basic Still Photography |
| PH 8841 | ▪ S-400-2011, Basic Still Photography |

d. **Training Pipelines.** NA
I. ONBOARD (IN-SERVICE) TRAINING

1. Proficiency or Other Training Organic to the New Development. Proficiency training under consideration would be accomplished through the use of SHARP training system Computer Based Training (CBT) lessons for intermediate maintenance level personnel. If approved, CBT lessons will be developed and distributed in CD-ROM format to all F/A-18F activities receiving SHARP; NAWCAD Patuxent River, Maryland; and Naval Air Facility (NAF) Atsugi, Japan.

 a. Maintenance Training Improvement Program. Current planning is to adopt the Aviation Maintenance Training Continuum System (AMTCS) concepts to replace Maintenance Training Improvement Program (MTIP). AMTCS is scheduled to begin full implementation for fleet deployment in Fiscal Year (FY) 02.

 b. Aviation Maintenance Training Continuum System. AMTCS will provide career path training to the Sailor from their initial service entry to the end of their military career. AMTCS concepts will provide an integrated system that will satisfy the training and administrative requirements of both the individual and the organization. The benefits will be manifested in the increased effectiveness of the technicians and the increased efficiencies of the management of the training business process. Where appropriate, capitalizing on technological advances and integrating systems and processes can provide the right amount of training at the right time, thus meeting the CNO’s mandated “just-in-time” training approach.

Technology investments enable the development of several state-of-the-art training and administrative tools: Interactive Multimedia Instruction for the technicians in the Fleet in the form of Interactive Courseware with Computer Managed Instruction and Computer Aided Instruction for the schoolhouse.

Included in the AMTCS development effort is the Aviation Maintenance Training Continuum System - Software Module, which provides testing [Test and Evaluation], recording [Electronic Certification Qualification Records], and a Feedback system. The core functionality of these AMTCS tools are based and designed around the actual maintenance-related tasks the technicians perform, and the tasks are stored and maintained in a Master Task List data bank. These tools are procured and fielded with appropriate Commercial-Off-The-Shelf hardware and software, i.e., Fleet Training Devices - Laptops, Personal Computers, Electronic Classrooms, Learning Resource Centers, operating software, and network software and hardware.

Upon receipt of direction from OPNAV (N789H), AMTCS concepts are to be implemented and the new tools integrated into the daily training environment of all participating aviation activities and supporting elements. AMTCS will serve as the standard training system for aviation maintenance training within the Navy, and is planned to supersede the existing MTIP program.

2. Personnel Qualification Standards. No Personnel Qualification Standards are planned for SHARP maintenance personnel.
3. Other Onboard or In-Service Training Packages. Not Applicable (NA)

J. LOGISTICS SUPPORT

1. Manufacturer and Contract Numbers

<table>
<thead>
<tr>
<th>CONTRACT NUMBER</th>
<th>MANUFACTURER</th>
<th>ADDRESS</th>
</tr>
</thead>
<tbody>
<tr>
<td>N00019-96-D-0159</td>
<td>Raytheon Technical Systems Company</td>
<td>6125 East 21st Street</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Indianapolis, IN 46219-2058</td>
</tr>
<tr>
<td>N00019-01-C-0105</td>
<td>Recon/Optical Incorporated</td>
<td>550 West Northwest Highway</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Barrington, IL 60010-3094</td>
</tr>
</tbody>
</table>

2. Program Documentation. The following program documentation has been completed:
 - SHARP Operational Requirements Document, #522-88-99, 1 July 1999
 - Acquisition Logistics Support Plan, 19 December 2000
 - Raytheon Integrated Support Plan, 20 March 2001

3. Technical Data Plan. Technical publications are to be developed for each assembly contained in SHARP and will provide data for the operation and maintenance of SHARP and associated Support Equipment. The Naval Air Technical Data and Engineering Service Command is the requiring activity for the SHARP program technical publication procurement and distribution. Naval Aviation Depot North Island, has been assigned engineering cognizance of SHARP technical manuals. Under their direction, the Boeing Company will develop and deliver technical publications required for organizational level support of SHARP, while the Raytheon Company will develop and deliver technical publications required for intermediate level support of SHARP. Initial Operating Capability is scheduled for FY04.

4. Test Sets, Tools, and Test Equipment. The SHARP Program is making maximum use of existing support equipment in the transport, loading, and maintenance of the SHARP system ashore and afloat. Training Device and Technical Training Equipment requirements are TBD.
 - Existing Transport and Loading Equipment
 - MHU-191 Weapons Skid (organizational level ashore and afloat)
 - MHU-202 Trailer (organizational level ashore)
 - HLU-288 Hoist (organizational and intermediate level ashore and afloat)
 - SHOLS Loading (organizational level and intermediate level ashore and afloat)
° Existing Maintenance Equipment
 - MSU-181 TARPS Maintenance Stand (organizational level ashore and afloat)
 - ATARS/ATFLIR EO- Pod Tester (organizational and intermediate level ashore and afloat)
 - 500-Pound Capacity Crane (intermediate level ashore and afloat)
 - ACU-20 Compressed Air Cart (ashore)

° New PGSE requirements identified for SHARP
 - SHARP Weapons Skid Adapter (organizational level ashore and afloat)
 - SHARP Maintenance Frame Adapter (organizational and intermediate level ashore and afloat)
 - SHARP SHOLS Trolley Adapters (organizational and intermediate level ashore and afloat)
 - ACU-20 Compressor, Venturi/Aftercooler (organizational level ashore)
 - 50-Foot Low Pressure Air Hose and Snap Fitting (organizational level ashore and afloat)
 - Window, ECS Ram Air Inlet, and Radome Covers

5. Repair Parts. The Navy Inventory Control Point will begin procurement of interim replacement parts in FY02 in support of the Low Rate Initial Production procurements. During the Interim Support period, all SHARP WRAs will be under an organizational level to OEM maintenance concept.

6. Human Systems Integration. Since the SHARP design is based on the CANDI acquisition approach, it will be difficult to change the current design of the system. Human Systems Integration will be utilized during evaluation of current facilities and new construction to take into account human engineering and equipment accessibility, and provide working clearance and space as required by safety regulations.

K. SCHEDULES

1. Installation and Delivery Schedules. As of the date of this NTSP, the SHARP program has been funded to meet the Navy’s minimum warfighting requirement of 24 pods. The total inventory objective is 50 pods (40 operational and 10 pipeline). Deliveries are planned to begin with Fighter Squadron Forty-One (VF-41) at NAS Lemoore, California, in FY02. A confirmed delivery schedule is not currently available, but will be included in updates to this NTSP.

2. Ready For Operational Use Schedule. The following table illustrates the draft transition plan as F-14 squadrons are phased out and transitioned to F/A-18F squadrons. SHARP pods will be ready for operational use when assigned to operational units during Carrier Airwing work-ups prior to deployment.
READY FOR OPERATIONAL USE SCHEDULE

<table>
<thead>
<tr>
<th>ACTIVITY</th>
<th>FY02</th>
<th>FY03</th>
<th>FY04</th>
<th>FY06</th>
<th>FY07</th>
<th>FY08</th>
<th>FY09</th>
<th>FY10</th>
</tr>
</thead>
<tbody>
<tr>
<td>VF-41</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF-102</td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF-211</td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF-213</td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF-154</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF-103</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VF-2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>VF-143</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
<td></td>
</tr>
<tr>
<td>VF-31</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
<tr>
<td>VF-32</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1</td>
</tr>
</tbody>
</table>

3. **Time Required to Install at Operational Sites.** Existing TARPS maintenance facilities and spaces are planned to be utilized for SHARP. An initial candidate space has been identified within the AIMD at NAS Lemoore, California, with the official site survey approved in May 2001. Modifications are planned for the USS Nimitz (CVN 68) while pier-side at Naval Base San Diego, California, in May 2003. Consideration has also been given to installation at NAF Atsugi, Japan, and a TBD East Coast NAS. Actual time required for modification and installation is undetermined at this time.

4. **Foreign Military Sales and Other Source Delivery Schedule.** No FMS are currently planned for the SHARP program. Multi-platform application is being considered. For further information regarding FMS or other platform applications contact the Developing Agency, NAVAIRSYSCOM, PMA265.

5. **Training Device and Technical Training Equipment Delivery Schedule.** TBD

L. **GOVERNMENT-FURNISHED EQUIPMENT AND CONTRACTOR-FURNISHED EQUIPMENT TRAINING REQUIREMENTS.** NA
M. RELATED NTSPs AND OTHER APPLICABLE DOCUMENTS

<table>
<thead>
<tr>
<th>DOCUMENT OR NTSP TITLE</th>
<th>DOCUMENT OR NTSP NUMBER</th>
<th>PDA CODE</th>
<th>STATUS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name / Function / Activity, Code / Internet Email</td>
<td>Telephone Numbers</td>
<td></td>
<td></td>
</tr>
<tr>
<td>--</td>
<td>-------------------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| CAPT Owen Fletcher
Deputy Aviation Maintenance Programs
CNO, N781B
Fletcher.owen@hq.navy.mil | COMM: (703) 604-7747
DSN: 664-7747
FAX: (703) 604-6972 |
| CDR Wanda Janus
Resource Sponsor / Program Sponsor
CNO, N785D1
Janus.wanda@hq.navy.mil | COMM: (703) 697-9359
DSN: 227-9359
FAX: (703) 695-7103 |
| CAPT Terry Merritt
Head, Aviation Technical Training Branch
CNO, N789H
Merritt.terry@hq.navy.mil | COMM: (703) 604-7730
DSN: 664-7730
FAX: (703) 604-6939 |
| AZCS Gary Greenlee
NTSP Manager
CNO, N789H1A
Greenlee.gary@hq.navy.mil | COMM: (703) 604-7743
DSN: 664-7743
FAX: (703) 604-6939 |
| CDR Kevin Neary
Aviation Manpower
CNO, N122C1
N122c1@bupers.navy.mil | COMM: (703) 695-3247
DSN: 225-3247
FAX: (703) 614-5308 |
| Mr. Robert Zweibel
Training Technology Policy
CNO, N795K
Zweibel.robert@hq.navy.mil | COMM: (703) 602-5151
DSN: 332-5151
FAX: (703) 602-5175 |
| Ms. Sharon Wright
IPT Lead, SHARP
NAVAIRSYSCOM, PMA265SW
Wrightsj@navair.navy.mil | COMM: (301) 757-7614
DSN: 757-7614
FAX: (301) 757-7613 |
| Mr. Ted Turner
DAPML, Tactical Reconnaissance
NAVAIRSYSCOM, PMA265TT
Turnerte@navair.navy.mil | COMM: (301) 757-7607
DSN: 757-7607
FAX: (301) 757-7613 |
| AZCM Kevin Green
Training Systems Manager
NAVAIRSYSCOM, PMA205-3D3
Greenkl@navair.navy.mil | COMM: (301) 757-8120
DSN: 757-8120
FAX: (301) 757-6941 |
| Ms. Suzanne Kmetz
Logistics Manager, SHARP
NAWCAD, AIR 3.1.1
Kmetzs@navair.navy.mil | COMM: (301) 757-4033
DSN: 757-4033
FAX: (301) 342-4474 |
APPENDIX A - POINTS OF CONTACT

<table>
<thead>
<tr>
<th>NAME / FUNCTION / ACTIVITY, CODE / INTERNET EMAIL</th>
<th>TELEPHONE NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mrs. Pollyanna Randol
Aviation NTSP Point of Contact
CINCLANTFLT, N71
randolpa@clf.navy.mil</td>
<td>COMM: (757) 836-0103
DSN: 836-0103
FAX: (757) 836-6737</td>
</tr>
<tr>
<td>CAPT Pat Salsman
Branch Head, Training Requirements and Assessments
CINCLANTFLT, N72
salmancp@clf.navy.mil</td>
<td>COMM: (757) 863-6495
DSN: 863-6495
FAX: (757) 863-6794</td>
</tr>
<tr>
<td>Mr. Bob Long
Deputy Director for Training
CINCPACFLT, N70
longrh@cpf.navy.mil</td>
<td>COMM: (808) 471-8513
DSN: 315-471-8513
FAX: (808) 471-8596</td>
</tr>
<tr>
<td>CAPT Patricia Huiatt
Deputy Assistant, Chief of Naval Personnel for Distribution
NAVPERSCOM, PERS-4B
p4b@persnet.navy.mil</td>
<td>COMM: (901) 874-3529
DSN: 882-3529
FAX: (901) 874-2606</td>
</tr>
<tr>
<td>CDR Timothy Ferree
Branch Head, Aviation Enlisted Assignments
NAVPERSCOM, PERS-404
p404@persnet.navy.mil</td>
<td>COMM: (901) 874-3691
DSN: 882-3691
FAX: (901) 874-2642</td>
</tr>
<tr>
<td>LCDR Raymond Lawry
Aviation Department Head
NAVMAC, 30
raymond.lawry@navmac.navy.mil</td>
<td>COMM: (901) 874-6218
DSN: 882-6218
FAX: (901) 874-6471</td>
</tr>
<tr>
<td>AZCS Randall Lees
NTSP Coordinator
NAVMAC, 32
randall.lees@navmac.navy.mil</td>
<td>COMM: (901) 874-6434
DSN: 882-6434
FAX: (901) 874-6471</td>
</tr>
<tr>
<td>AKC Tina Jacobs
NTSP Coordinator (Assistant)
NAVMAC, 32
parthina.jacobs@navmac.navy.mil</td>
<td>COMM: (901) 874-6483
DSN: 882-6483
FAX: (901) 874-6471</td>
</tr>
<tr>
<td>Mr. Steve Berk
CNET NTSP Distribution
CNET ETS-23
stephen-g.berk@cnet.navy.mil</td>
<td>COMM: (850) 452-8919
DSN: 922-8919
FAX: (850) 452-4853</td>
</tr>
<tr>
<td>CDR Erich Blunt
Aviation Technical Training
CNET, ETE-32
cdr-erich.blunt@cnet.navy.mil</td>
<td>COMM: (850) 452-4915
DSN: 922-4915
FAX: (850) 452-4901</td>
</tr>
</tbody>
</table>
APPENDIX A - POINTS OF CONTACT

<table>
<thead>
<tr>
<th>NAME / FUNCTION / ACTIVITY, CODE / INTERNET EMAIL</th>
<th>TELEPHONE NUMBERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>LCDR Rick Lawson</td>
<td>COMM: (757) 444-5087 ext. 3354</td>
</tr>
<tr>
<td>NTSP Manager</td>
<td>DSN: 564-5087 ext. 3354</td>
</tr>
<tr>
<td>COMOPTEVFOR, 533</td>
<td>FAX: (757) 444-3820</td>
</tr>
<tr>
<td>lawsonr@cotg.navy.mil</td>
<td></td>
</tr>
<tr>
<td>Mr. Dave Turner</td>
<td>COMM: (301) 862-3092 ext. 557</td>
</tr>
<tr>
<td>SHARP LMI/Maintenance Planning</td>
<td>DSN: NA</td>
</tr>
<tr>
<td>Ketron/BIONETICS</td>
<td>FAX: (301) 863-5763</td>
</tr>
<tr>
<td>dturner@ketron.com</td>
<td></td>
</tr>
<tr>
<td>Ms. Nancy VanDeven</td>
<td>COMM: (301) 862-2317</td>
</tr>
<tr>
<td>SHARP WBS, CM, ILS Documents</td>
<td>DSN: NA</td>
</tr>
<tr>
<td>EDO Corporation</td>
<td>FAX: (301) 863-1238</td>
</tr>
<tr>
<td>vandeven@mtech.net</td>
<td></td>
</tr>
<tr>
<td>Mr. Phil Szczyglowski</td>
<td>COMM: (301) 757-8280</td>
</tr>
<tr>
<td>Competency Manager</td>
<td>DSN: 757-8280</td>
</tr>
<tr>
<td>NAVAIRSYSCOM, AIR 3.4.1</td>
<td>FAX: (301) 342-7737</td>
</tr>
<tr>
<td>szczyglowspr@navair.navy.mil</td>
<td></td>
</tr>
<tr>
<td>AVCM Jeffrey Lovelady</td>
<td>COMM: (301) 757-3109</td>
</tr>
<tr>
<td>Front End Analysis Manager</td>
<td>DSN: 757-3109</td>
</tr>
<tr>
<td>NAVAIRSYSCOM, AIR 3.4.1</td>
<td>FAX: (301) 342-7737</td>
</tr>
<tr>
<td>loveladyja@navair.navy.mil</td>
<td></td>
</tr>
<tr>
<td>ATC Aubrey Taylor</td>
<td>COMM: (301) 757-3108</td>
</tr>
<tr>
<td>MPT Analyst (NTSP Author)</td>
<td>DSN: 757-3108</td>
</tr>
<tr>
<td>NAVAIRSYSCOM, AIR 3.4.1</td>
<td>FAX: (301) 342-7737</td>
</tr>
<tr>
<td>tayloral@navair.navy.mil</td>
<td></td>
</tr>
</tbody>
</table>