A. Mission Description and Budget Item Justification

This program funds high energy laser (HEL) advanced technology development through the HEL Joint Technology Office (JTO). HEL weapon systems have many potential advantages, including speed-of-light velocity, high precision, significant magazine depth, low-cost per kill, and reduced logistics requirements. As a result, HELs have the potential to perform a wide variety of military missions including interception of ballistic missiles in boost phase; defeat of high-speed, maneuvering anti-ship and anti-aircraft missiles; and the ultra-precision negation of targets in urban environments with no collateral damage. This program is part of an overall Department of Defense (DoD) HEL Science and Technology program. In general, efforts funded under this program are chosen for their potential to have major impact on multiple HEL systems and on multiple Service missions while complementing Service/Agency programs that are directed at more specific Service needs. A broad range of technologies are addressed in key areas such as chemical lasers, solid state lasers, beam control, optics, propagation, and free electron lasers. Note: In FY 2005, Congress added $1.3 million for the Joint High Power Solid State Laser program.

This program is in Budget Activity 3, Advanced Technology Development, since it enables and demonstrates technologies for existing system upgrades and/or new system developments that have military utility and address warfighter needs.

B. Program Change Summary ($ in Millions)

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>FY 2004</td>
<td>10.818</td>
<td>8.547</td>
<td>6.136</td>
<td>3.826</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FY 2005</td>
<td>10.473</td>
<td>9.760</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Note: In FY 2004, this program was transferred to the Air Force by the Office of the Secretary of Defense. The Air Force continues the tri-Service operation of the program under the High Energy Laser Joint Technology Office.
C. Performance Metrics
 Under Development.
(U) **A. Mission Description and Budget Item Justification**

This program funds high energy laser (HEL) advanced technology development through the HEL Joint Technology Office (JTO). HEL weapon systems have many potential advantages, including speed-of-light velocity, high precision, significant magazine depth, low-cost per kill, and reduced logistics requirements. As a result, HELs have the potential to perform a wide variety of military missions including interception of ballistic missiles in boost phase; defeat of high-speed, maneuvering anti-ship and anti-aircraft missiles; and the ultra-precision negation of targets in urban environments with no collateral damage. This program is part of an overall Department of Defense (DoD) HEL Science and Technology program. In general, efforts funded under this program are chosen for their potential to have major impact on multiple HEL systems and on multiple Service missions while complementing Service/Agency programs that are directed at more specific Service needs. A broad range of technologies are addressed in key areas such as chemical lasers, solid state lasers, beam control, optics, propagation, and free electron lasers. Note: In FY 2005, Congress added $1.3 million for the Joint High Power Solid State Laser program.

This program is in Budget Activity 3, Advanced Technology Development, since it enables and demonstrates technologies for existing system upgrades and/or new system developments that have military utility and address warfighter needs.

(U) **B. Accomplishments/Planned Program ($ in Millions)**

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Actual</td>
<td>Estimate</td>
<td></td>
<td>Estimate</td>
<td></td>
<td>Estimate</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Quantity of RDT&E Articles</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

(U) **MAJOR THRUST/CONGRESSIONAL ADD:** Develop solid state lasers that have potential as future HEL weapon laser devices because of their inherent small size and the fact that they require only electrical energy in order to run, thereby greatly simplifying systems engineering and supportability.

(U) **In FY 2004:** Participated in the Joint High Power Solid State Laser (JHPSSL) project to demonstrate 25 kilowatt lasers. Continued development of a design for a 100 kilowatt laser. Continued development of high-power laser component technology addressing all elements of the laser (e.g., diode pump lasers, wavefront control technology, thermal control, beam combining, etc.).

(U) **In FY 2005:** Participate in the JHPSSL project and demonstrate three 25 kilowatt lasers. Develop test hardware for and conduct independent, government testing of these lasers. Factors such as performance, cost, etc. will be evaluated between the various approaches funded by the Army, Air Force, and HEL JTO. Continue development of a design for a 100 kilowatt laser. Conduct a proposal call for the 100 kilowatt JHPSSL, perform the selection process, and initiate funding to one or more contractors. Continue development of high-power laser component technology addressing all elements of the laser (e.g., diode pump lasers, wavefront control technology, thermal control, beam combining technology, etc.). Conduct Service and Agency proposal call for FY 2005 and fund first year of selected efforts.

(U) **In FY 2006:** Continue to participate in the Joint High Power Solid State Laser (JHPSSL) effort to...
demonstrate 100 kilowatts. Assess advanced configurations for power scaling such as combined fiber lasers. Conduct necessary studies to understand and improve fieldability of solid state lasers. Continue to assemble successful pieces from individual applied research projects (e.g., long-life diode-laser drivers, thin-disk amplifiers, phase-conjugate mirrors, mist cooling) into an advanced demonstration of solid state laser sub-systems. Conduct an industry proposal call for FY 2006, fund first year of selected efforts, and fund second year of FY 2005 Service and Agency efforts.

(U) In FY 2006: Continue component development program and pursuit of an integrated beam control demonstration addressing tactical applications. Conduct an industry proposal call for FY 2006, fund first year of selected efforts, and fund second year of FY 2005 Service and Agency efforts.

(U) In FY 2007: Continue pursuit of an integrated beam control demonstration addressing tactical applications. Address advanced beam control architectures and algorithms that have not already been tested in the integrated beam control demonstration. Continue to fund the contract efforts started in FY 2006, conduct Service and Agency proposal call for FY 2007, and fund first year of selected efforts.

(U) MAJOR THRUST: Develop beam-control technologies for surface, air, and space mission areas, as well as develop supporting technologies.

(U) In FY 2004: Demonstrated beam control component technology, including high power optical components (windows, coatings, etc), wavefront sensors, wavefront control algorithms, pointing and tracking technology, and atmospheric characterization.

(U) In FY 2005: Maintain the component development program. Begin planning for a high-value integrated beam control demonstration that would use successful pieces from individual applied research projects (e.g., deformable mirrors, wavefront sensors, advanced tracking and compensation algorithms) and specifically address tactical applications. Conduct Service and Agency proposal call for FY 2005 and fund first year of selected efforts.

(U) In FY 2006: Continue component development program and pursue an integrated beam control demonstration addressing tactical applications. Conduct an industry proposal call for FY 2006, fund first year of selected efforts, and fund second year of FY 2005 Service and Agency efforts.

(U) MAJOR THRUST: Develop modeling and simulation technologies that support an end-to-end laser system model. Work in this thrust completed in FY 2004.
<table>
<thead>
<tr>
<th>Budget Activity</th>
<th>PE Number and Title</th>
<th>Project Number and Title</th>
<th>Date</th>
</tr>
</thead>
</table>

(U) In FY 2004: Developed the infrastructure for integrating existing and emerging high-fidelity component models into an end-to-end engagement model, thereby allowing improvement of the high energy laser (HEL) systems design and reducing the need for expensive field testing.

(U) In FY 2005: Not Applicable.

(U) In FY 2006: Not Applicable.

(U) In FY 2007: Not Applicable.

(U) MAJOR THRUST: Develop free electron laser (FEL) technologies that scale to high power and permit FELs to be fielded on military platforms.

(U) In FY 2004: Demonstrated enabling technologies for scaling FELs to weapon class power levels. Achieved 10 kilowatts. Demonstrated a photocathode model as a tool to design advanced robust long-life photocathodes. Demonstrated radio frequency cavities capable of high current operation. Began laboratory testing to determine if new optical coating methods produce the robustness required for high power applications.

(U) In FY 2005: Demonstrate FEL system components for power scaling. A 10 kilowatt laboratory demonstrator will be used as a test bed. Demonstrate a separate photocathode test bed and refine photocathode models as a tools to design robust, long-life photocathodes. Investigate development of a separate injector test stand in conjunction with the photocathode test bed. Begin analysis of ship-board integration requirements. Conduct Service and Agency proposal call for FY 2005 and fund first year of selected efforts.

(U) In FY 2006: Develop and demonstrate technologies leading to a 100 kilowatt class demonstrator. Develop end-to-end simulation to develop refined system level technology for power scaling. Continue analysis of shipboard integration requirements. Conduct an industry proposal call for FY 2006, fund first year of selected efforts, and fund second year of FY 2005 Service and Agency efforts.

(U) In FY 2007: Examine all system components including compact electron beam lines, optical beam handling outside the laser, shipboard thermal management systems, and compact electrical power conditioning systems. Continue to fund the contract efforts started in FY 2006, conduct Service and Agency proposal call for FY 2007, and fund first year of selected efforts.

(U) MAJOR THRUST: Develop chemical laser advanced technologies and concepts that allow higher performance and more supportable chemical lasers. Work in this thrust will be completed in FY 2005.

(U) In FY 2004: Demonstrated closed-cycle and recyclable chemical lasers, especially chemical oxygen iodine lasers appropriate for tactical applications.

(U) In FY 2005: Demonstrate chemical laser generators that are capable of operating in a gravity free...
(U) In FY 2006: Not Applicable.
(U) In FY 2007: Not Applicable.
(U) Total Cost

|---------|---------|---------|---------|---------|---------|---------|---------|------------------|------------|

(U) C. Other Program Funding Summary ($ in Millions)

- PE 0602500F, Multi-Disciplinary Space Technology.
- PE 0603444F, Maui Space Surveillance System.
- PE 0603500F, Multi-Disciplinary Advanced Development Space Technology.
- PE 0603605F, Advanced Weapons Technology.
- PE 0603883C, Ballistic Missile Defense Boost Phase Segment.
- PE 0602605F, Directed Energy Technology.
- PE 0602307A, Advanced Weapons Technology.
- This project has been coordinated through the

...
<table>
<thead>
<tr>
<th>BUDGET ACTIVITY</th>
<th>PE NUMBER AND TITLE</th>
<th>PROJECT NUMBER AND TITLE</th>
</tr>
</thead>
<tbody>
<tr>
<td>03 Advanced Technology Development (ATD)</td>
<td>0603924F High Energy Laser</td>
<td>5095 High Energy Laser Advanced Technology Program</td>
</tr>
</tbody>
</table>

(U) **C. Other Program Funding Summary ($ in Millions)**

- Reliance process to harmonize efforts and eliminate duplication.

(U) **D. Acquisition Strategy**

- Not Applicable.