Find a Security Clearance Job!

Military

Three-Dimensional Expeditionary Long-Range Radar (3DELRR)

On 06 October 2014, the U.S. Air Force awarded Raytheon a contract for engineering and manufacturing development of a new expeditionary radar that will detect, identify and track drones, missiles and aircraft.

The $19.5 million fixed-price incentive firm contract covers the engineering, manufacturing and development of three three-dimensional expeditionary long-range radar (3DELRR ) systems. With all options included, the contract was estimated estimated at $71.8 million and includes the procurement of an additional three radar systems, for a total of six radar systems and product support.

Under the first agreement, there are priced options for defense exportability features designs, an 18-month low-rate initial production (LRIP) and three one-year options for interim contractor support. During the EMD phase, Raytheon will design and manufacture a total of three radars that will undergo contractor and government developmental testing and government operational testing. Three more radars will be built under the LRIP option, for a total of six, to achieve initial operational capability in 2020. A follow-on, full-rate production contract will deliver the remaining 29 systems.

Raytheon's 3DELRR system is a gallium nitride (GaN)-based radar that operates in the C-band of the radio frequency spectrum. By using GaN, Raytheon was able to affordably increase the radar's range, sensitivity and search capabilities. C-band also offers the military increased flexibility because that portion of the spectrum is relatively uncongested.

Components of the new radar will include an antenna array, signal and data processors, rotating assembly, identification friend or foe system and various other subsystems. Radar capabilities will include, but are not limited to, improved detection performance for newer targets, stronger clutter rejection, electronic protection, anti-radiation missile countermeasures and an open systems architecture design.

The 3DELRR radar is one of the first programs under the DoD's Better Buying Power initiative to be designed for exportability, enabling U.S. forces, allies and security partners to benefit from the system. The system will serve as the US Air Force's primary long-range, ground-based sensor for detecting, identifying, tracking and reporting aerial targets -- replacing the legacy TPS-75 system.

The Three-Dimensional Expeditionary Long-Range Radar (3DELRR) is required to replace the AN/TPS-75 radar as the principal USAF long-range, ground-based sensor for detecting, identifying, tracking, and reporting aircraft and missiles in support of the Joint Forces Air Component Commander through the Ground Theater Air Control System. It is possible that the USMC will align their AN/TPS-59 product improvement/upgrade initiative with this effort. The primary mission of the 3DELRR will be to provide long-range surveillance, control of aircraft, and theater ballistic missile detection. The 3DELRR will provide air controllers with a precise, real-time air picture of sufficient quality to conduct close control of individual aircraft under a wide range of environmental and operational conditions.

In the case of theater missile defense operations, the new radar will have the capability to detect, track, and disseminate target information to respective command and control nodes such as the USAF Control and Reporting Center to disseminate for warning and engagement. Similarly, the joint targeting process will benefit from trajectory information provided by the 3DELRR, which will include launch and impact location. The 3DELRR will correct current radar system shortfalls by providing the capability to detect and report highly maneuverable, small radar cross section targets as well as classify and determine the type of a non-cooperative aircraft. It will also mitigate most of the sustainability and maintainability concerns which plague the current system.

This new radar will give the GTACS real-time display of all air activity and be rugged enough to support a wide range of deployed operations in all types of weather and terrain conditions. It will also provide sufficient advanced warning and target information to allow for threat evaluation and responsive action.

The 3DELRR will provide air controllers with a precise, real-time air picture of sufficient quality to conduct close control of individual aircraft under a wide range of environmental and operational conditions. In the case of theater missile defense operations, the new radar will have the capability to detect, track, and disseminate target information to respective command and control nodes such as the USAF Control and Reporting Center to disseminate for warning and engagement. Similarly, the joint targeting process will benefit from trajectory information provided by the 3DELRR, which will include launch and impact location.

The 3DELRR will correct current radar system shortfalls by providing the capability to detect and report highly maneuverable, small radar cross section targets as well as classify and determine the type of a non-cooperative aircraft. It will also optimize system sustainability and maintainability.




NEWSLETTER
Join the GlobalSecurity.org mailing list